mini1013 commited on
Commit
8fd4aa6
·
verified ·
1 Parent(s): 95b22ba

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,228 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mini1013/master_domain
3
+ library_name: setfit
4
+ metrics:
5
+ - metric
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: 맑은농산 리얼넛츠 베리앤요거트 하루건강견과 20g x 25개입 비트리
14
+ - text: 23년 햅쌀 골든퀸3호 수향미 특등급 10kg / 순차출고 상상리허설
15
+ - text: 산과들에 원데이오리지널 20g x 50개입 선물세트 동의 제이엠세일즈
16
+ - text: 구운아몬드 1kg 견과류 에이케이에스앤디 (주) AK인터넷쇼핑몰
17
+ - text: 필리핀 세부 건망고 80g 10개-쫀득한망고 말린망고 말린과일 대신유통
18
+ inference: true
19
+ model-index:
20
+ - name: SetFit with mini1013/master_domain
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: metric
31
+ value: 0.894413407821229
32
+ name: Metric
33
+ ---
34
+
35
+ # SetFit with mini1013/master_domain
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Number of Classes:** 7 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | 6.0 | <ul><li>'[채울농산] 국산 장수상황버섯(baumii 최상품) 1개월분 (100g) 1개월분 채울농산'</li><li>'명이나물 2kg 산마늘잎 생명이나물 산나물 생채 명이장아찌 강원도 산마늘 명이 장아찌 2kg 토종농장'</li><li>'풀무원 한끼연두부 오리엔탈유자 (118gX2EA) (주)풀무원'</li></ul> |
66
+ | 2.0 | <ul><li>'커클랜드 건 블루베리 567g 몸에 좋은 건과일 샐러드나 베이킹에 활용 코스트코 마인드 트레이드(mind trade)'</li><li>'웰프레쉬 냉동 블루베리 미국산 1kg 배동바지몰'</li><li>'커클랜드 냉동 블루베리 2.27kg 코스트코 아이스박스 요거트 과일 베리 라미의잡화점'</li></ul> |
67
+ | 5.0 | <ul><li>'2022년산 국산 서리태 2kg 검은콩 속청 전남 구례산 볶은 서리태가루 1kg 농업회사법인(주)한결유통'</li><li>'국산 서리태 2kg 검은콩 속청 전남 구례산 국산 서리태(특A) 1kg 농업회사법인(주)한결유통'</li><li>'잔다리마을 특허받은 공법으로 로스팅한 검은콩 서리태 볶음콩 250g / 영양 간식 주식회사 패스트뷰'</li></ul> |
68
+ | 0.0 | <ul><li>'Sol Simple 태양열 건조 망고 6온스(1팩)_파인애플 시이부동'</li><li>'[푸드] KUNNA 쿤나 건망고 75g 3개 부담없이 젤리 망고 마른 과일 태국 간식 사무실 탕비실 건조과일 말린 망고 에스디지컴퍼니'</li><li>'너츠브라더 촉촉한 건망고 200g 건망고 1kg (주)조하'</li></ul> |
69
+ | 4.0 | <ul><li>'[카무트] 고대곡물 카무트 쌀 밀 500g 이푸른(주)'</li><li>'23년 국산 현미 쌀눈 2kg 주식회사 건강중심'</li><li>'[예약구매 할인] 저당 파로 800g 이탈리아 고대곡물 바비조아 저당밥 시리즈 특허공법 저항성전분 주식회사 바비조아'</li></ul> |
70
+ | 1.0 | <ul><li>'맛있는家 너트리 캘리포니아 생아몬드 500g x 2개 (주)씨제이이엔엠'</li><li>'길림양행 탐스팜 쿠키앤크림 아몬드 190g 바이트리스'</li><li>'머거본 커피땅콩 130g 6개/ 견과류 마른안주 주전부리 보마스'</li></ul> |
71
+ | 3.0 | <ul><li>'웰루츠 A등급 냉동 블루베리 1kg 냉동과일 웰루츠 냉동 키위 다이스(중국) 1kg 웰루츠'</li><li>'뉴뜨레 냉동 블루베리 홀 1kg+1kg 무가당 세척블루베리 과일 모음 다이스 퓨레 뉴뜨레 냉동 그린키위 1kg x 2봉 주식회사 보금푸드'</li><li>'코스트코 커클랜드 냉동 블루베리 2.27kg / 아이스박스 포장발송 아이스팩 + 드라이아이스 발송 남들과 다르게'</li></ul> |
72
+
73
+ ## Evaluation
74
+
75
+ ### Metrics
76
+ | Label | Metric |
77
+ |:--------|:-------|
78
+ | **all** | 0.8944 |
79
+
80
+ ## Uses
81
+
82
+ ### Direct Use for Inference
83
+
84
+ First install the SetFit library:
85
+
86
+ ```bash
87
+ pip install setfit
88
+ ```
89
+
90
+ Then you can load this model and run inference.
91
+
92
+ ```python
93
+ from setfit import SetFitModel
94
+
95
+ # Download from the 🤗 Hub
96
+ model = SetFitModel.from_pretrained("mini1013/master_cate_fd5")
97
+ # Run inference
98
+ preds = model("구운아몬드 1kg 견과류 에이케이에스앤디 (주) AK인터넷쇼핑몰")
99
+ ```
100
+
101
+ <!--
102
+ ### Downstream Use
103
+
104
+ *List how someone could finetune this model on their own dataset.*
105
+ -->
106
+
107
+ <!--
108
+ ### Out-of-Scope Use
109
+
110
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
111
+ -->
112
+
113
+ <!--
114
+ ## Bias, Risks and Limitations
115
+
116
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
117
+ -->
118
+
119
+ <!--
120
+ ### Recommendations
121
+
122
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
123
+ -->
124
+
125
+ ## Training Details
126
+
127
+ ### Training Set Metrics
128
+ | Training set | Min | Median | Max |
129
+ |:-------------|:----|:--------|:----|
130
+ | Word count | 4 | 10.0886 | 25 |
131
+
132
+ | Label | Training Sample Count |
133
+ |:------|:----------------------|
134
+ | 0.0 | 50 |
135
+ | 1.0 | 50 |
136
+ | 2.0 | 50 |
137
+ | 3.0 | 50 |
138
+ | 4.0 | 50 |
139
+ | 5.0 | 50 |
140
+ | 6.0 | 50 |
141
+
142
+ ### Training Hyperparameters
143
+ - batch_size: (512, 512)
144
+ - num_epochs: (20, 20)
145
+ - max_steps: -1
146
+ - sampling_strategy: oversampling
147
+ - num_iterations: 40
148
+ - body_learning_rate: (2e-05, 2e-05)
149
+ - head_learning_rate: 2e-05
150
+ - loss: CosineSimilarityLoss
151
+ - distance_metric: cosine_distance
152
+ - margin: 0.25
153
+ - end_to_end: False
154
+ - use_amp: False
155
+ - warmup_proportion: 0.1
156
+ - seed: 42
157
+ - eval_max_steps: -1
158
+ - load_best_model_at_end: False
159
+
160
+ ### Training Results
161
+ | Epoch | Step | Training Loss | Validation Loss |
162
+ |:-------:|:----:|:-------------:|:---------------:|
163
+ | 0.0182 | 1 | 0.4119 | - |
164
+ | 0.9091 | 50 | 0.2564 | - |
165
+ | 1.8182 | 100 | 0.0407 | - |
166
+ | 2.7273 | 150 | 0.0157 | - |
167
+ | 3.6364 | 200 | 0.014 | - |
168
+ | 4.5455 | 250 | 0.0 | - |
169
+ | 5.4545 | 300 | 0.0 | - |
170
+ | 6.3636 | 350 | 0.0 | - |
171
+ | 7.2727 | 400 | 0.0 | - |
172
+ | 8.1818 | 450 | 0.0001 | - |
173
+ | 9.0909 | 500 | 0.0 | - |
174
+ | 10.0 | 550 | 0.0 | - |
175
+ | 10.9091 | 600 | 0.0 | - |
176
+ | 11.8182 | 650 | 0.0 | - |
177
+ | 12.7273 | 700 | 0.0 | - |
178
+ | 13.6364 | 750 | 0.0 | - |
179
+ | 14.5455 | 800 | 0.0 | - |
180
+ | 15.4545 | 850 | 0.0 | - |
181
+ | 16.3636 | 900 | 0.0 | - |
182
+ | 17.2727 | 950 | 0.0 | - |
183
+ | 18.1818 | 1000 | 0.0 | - |
184
+ | 19.0909 | 1050 | 0.0 | - |
185
+ | 20.0 | 1100 | 0.0 | - |
186
+
187
+ ### Framework Versions
188
+ - Python: 3.10.12
189
+ - SetFit: 1.1.0.dev0
190
+ - Sentence Transformers: 3.1.1
191
+ - Transformers: 4.46.1
192
+ - PyTorch: 2.4.0+cu121
193
+ - Datasets: 2.20.0
194
+ - Tokenizers: 0.20.0
195
+
196
+ ## Citation
197
+
198
+ ### BibTeX
199
+ ```bibtex
200
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
201
+ doi = {10.48550/ARXIV.2209.11055},
202
+ url = {https://arxiv.org/abs/2209.11055},
203
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
204
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
205
+ title = {Efficient Few-Shot Learning Without Prompts},
206
+ publisher = {arXiv},
207
+ year = {2022},
208
+ copyright = {Creative Commons Attribution 4.0 International}
209
+ }
210
+ ```
211
+
212
+ <!--
213
+ ## Glossary
214
+
215
+ *Clearly define terms in order to be accessible across audiences.*
216
+ -->
217
+
218
+ <!--
219
+ ## Model Card Authors
220
+
221
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
222
+ -->
223
+
224
+ <!--
225
+ ## Model Card Contact
226
+
227
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
228
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_fd",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.46.1",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.46.1",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c89fa607359d78b30d930ca8b8ad2ddef52576fec1230e852f00f0be1ada986c
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a23aa012f7276e9f802c805cce887d1e21f90ba2cc65a8da84a7beba348788a3
3
+ size 43935
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff