File size: 11,465 Bytes
a991749
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: '[본죽]5첩반상 5종(진미채+멸치+연근+콩자반+깻잎) 5팩+5팩 외 밑반찬 5종 5팩+5팩 메가글로벌001'
- text: 싸고 맛있고 영양까지 풍부한 110가지 우리집반찬/우리홈메이드푸드 도토리묵/양념 홈메이드 푸드
- text: 샘표 쓱쓱싹싹밥도둑 반찬 9 골라담기 / 장조림 오징어채볶음 멸치볶음 2. 고추장 멸치볶음 3봉_4. 쇠고기 장조림 3봉_6. 돼지고기
    장조림 3 샘표식품 주식회사
- text: 본죽 쇠고기 장조림 170g x 4  마이엘(Maiel)
- text: 국산 고추장멸치볶음 500g 조림 반찬 국산 오복채 1kg 사계절반찬
inference: true
model-index:
- name: SetFit with mini1013/master_domain
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: metric
      value: 0.9101876675603218
      name: Metric
---

# SetFit with mini1013/master_domain

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 9 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                  |
|:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6.0   | <ul><li>'본죽 미니장조림 2박스 70gx5개입x2  셜크'</li><li>'[본죽]쇠고기 장조림 300g (냉장 소고기 반찬 점심 저녁 도시락 어린이 아기반찬)  순수본 주식회사'</li><li>'본죽 쇠고기 장조림 170g x 4 5. 비비고 육개장 500g x 5개 감성주머니'</li></ul>                               |
| 1.0   | <ul><li>'일가집 일미 쫄깃 치자 단무지 1kg 두부 날치알 피클 일가집 일미 고추지 1kg 고추절임 고추장아찌 머치바잉'</li><li>'일가집 일미 쫄깃 치자 단무지 1kg 두부 날치알 피클 일가집 일미 깐마늘 1kg 양파 다진마늘 청양 머치바잉'</li><li>'참 맛좋은 하진 반달 단무지 2.5kg  농업회사법인 봉농주식회사'</li></ul>  |
| 5.0   | <ul><li>'진 명이나물(실속형) 10kg 대용량 업소용 식당 반찬 장아찌 05 유림 명이나물 10kg (유) 협동맛사랑식품'</li><li>'단풍콩잎 500g 양념 장아찌 국내제조 콩잎김치 삭힌 국산 갈치속젓 500g 사계절반찬'</li><li>'군산 울외장아찌 2kg 나라즈케 나라스케 술지게미 2.무 장아찌 2kg 주식회사 백년부엌'</li></ul> |
| 2.0   | <ul><li>'마늘쫑무침 4kg 대용량 식당 업소용 반찬 무침 장아찌  (유) 협동맛사랑식품'</li><li>'[서울,성남 ] 푸릇푸릇 시금치무침 300g [암사 우리집반찬]  주식회사 프레시멘토'</li><li>'[주문폭주] 농가살리기 30년 전통 통영할매 원조 생굴무침 330g 생굴무침 330g 1통 주식회사 청년농부들'</li></ul>         |
| 8.0   | <ul><li>'일본식 반찬대용 츠쿠다니 김조림 180g  서울타임즈'</li><li>'오뚜기 고등어갈치조림양념120g  제이디(JD)'</li><li>'청우식품 이음식 스지사태조림 200g  푸드뱅크(주)'</li></ul>                                                                            |
| 4.0   | <ul><li>'[종가집]종가집 오징어채볶음 60g  에스케이스토아주식회사'</li><li>'[반찬가게 찬장]신선한재료 당일제조 배송 고사리볶음 가정식 반찬 집밥 나물/무침/볶음 배달 밑반찬_건파래무침 주식회사 찬장에프에스대전'</li><li>'청정원 종가집 견과류 멸치볶음 60G  조은마켓'</li></ul>                            |
| 7.0   | <ul><li>'종가집 옛맛 무말랭이 1kg x 2개  더빈(THE BIN)'</li><li>'반찬단지 마늘쫑무침 1kg 아삭 마늘장아찌 반찬거리  와이엘플래닛'</li><li>'가을무를 말려 쫄깃하고 달큰한 국산 무말랭이 1kg 1. 국산 무말랭이 1kg 주식회사 태극인 농업회사법인'</li></ul>                                |
| 0.0   | <ul><li>'씨제이 비비고 오징어채 볶음 55g 아이스박스 포장 (주)씨티케이이비전코리아'</li><li>'매운 고추부각 튀각 30g 6봉 티각태각 속초 명품 특산물 김부각30g 6봉 엠앤엠컴퍼니'</li><li>'대구 반고개 무침회 똘똘이식당 납작만두 오징어 회무침 캠핑 밀키트 무침회세트(중)_보통맛 대구 똘똘이 무침회'</li></ul>         |
| 3.0   | <ul><li>'미자언니네 밑반찬 하얀콩강정 120g 1팩 미자언니네  하얀콩강정 에센셜키친'</li><li>'[메인반찬 국 찌개 김치 세트] 건강한 반찬 이기는면역찬 메인반찬_계란말이 이기는면역찬(서초점)'</li><li>'[본죽] 밑반찬 5종 세트(진미채볶음 멸치볶음 깻잎무침 무말랭이 궁채절임)  메가글로벌001'</li></ul>              |

## Evaluation

### Metrics
| Label   | Metric |
|:--------|:-------|
| **all** | 0.9102 |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_fd9")
# Run inference
preds = model("본죽 쇠고기 장조림 170g x 4  마이엘(Maiel)")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median  | Max |
|:-------------|:----|:--------|:----|
| Word count   | 3   | 10.1981 | 21  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0.0   | 50                    |
| 1.0   | 42                    |
| 2.0   | 22                    |
| 3.0   | 50                    |
| 4.0   | 50                    |
| 5.0   | 50                    |
| 6.0   | 50                    |
| 7.0   | 50                    |
| 8.0   | 50                    |

### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch   | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0154  | 1    | 0.4845        | -               |
| 0.7692  | 50   | 0.2975        | -               |
| 1.5385  | 100  | 0.0992        | -               |
| 2.3077  | 150  | 0.0418        | -               |
| 3.0769  | 200  | 0.0246        | -               |
| 3.8462  | 250  | 0.0358        | -               |
| 4.6154  | 300  | 0.0185        | -               |
| 5.3846  | 350  | 0.0123        | -               |
| 6.1538  | 400  | 0.0121        | -               |
| 6.9231  | 450  | 0.0008        | -               |
| 7.6923  | 500  | 0.0003        | -               |
| 8.4615  | 550  | 0.0002        | -               |
| 9.2308  | 600  | 0.0001        | -               |
| 10.0    | 650  | 0.0001        | -               |
| 10.7692 | 700  | 0.0001        | -               |
| 11.5385 | 750  | 0.0002        | -               |
| 12.3077 | 800  | 0.0001        | -               |
| 13.0769 | 850  | 0.0001        | -               |
| 13.8462 | 900  | 0.0001        | -               |
| 14.6154 | 950  | 0.0001        | -               |
| 15.3846 | 1000 | 0.0001        | -               |
| 16.1538 | 1050 | 0.0001        | -               |
| 16.9231 | 1100 | 0.0001        | -               |
| 17.6923 | 1150 | 0.0001        | -               |
| 18.4615 | 1200 | 0.0001        | -               |
| 19.2308 | 1250 | 0.0001        | -               |
| 20.0    | 1300 | 0.0001        | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->