mini1013 commited on
Commit
198290c
·
verified ·
1 Parent(s): d976d94

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,244 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - setfit
4
+ - sentence-transformers
5
+ - text-classification
6
+ - generated_from_setfit_trainer
7
+ widget:
8
+ - text: 45T PVC 원톤파티션 사무실파티션 책상 칸막이 패브릭 천파티션 가림막 W600 H1000 가구/인테리어>서재/사무용가구>사무/교구용가구>파티션
9
+ - text: GOYA 고야 크맘 곰 자작나무 책상 파티션 600 학교 칸막이 가구/인테리어>서재/사무용가구>사무/교구용가구>파티션
10
+ - text: 와이디 로아 모던 책상 미드센츄리 테이블 800 가구/인테리어>서재/사무용가구>책상>일자형 책상
11
+ - text: 컴퓨터 의자 가정용 앉은 기숙사 대학생 소파 사무실 거짓말 가구/인테리어>서재/사무용가구>의자>하이팩의자
12
+ - text: 한샘 레그핏 쿠션형 책상 발받침대 의자발받침 다리받침대 가구/인테리어>서재/사무용가구>의자>의자발받침대
13
+ metrics:
14
+ - accuracy
15
+ pipeline_tag: text-classification
16
+ library_name: setfit
17
+ inference: true
18
+ base_model: mini1013/master_domain
19
+ model-index:
20
+ - name: SetFit with mini1013/master_domain
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: accuracy
31
+ value: 1.0
32
+ name: Accuracy
33
+ ---
34
+
35
+ # SetFit with mini1013/master_domain
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Number of Classes:** 5 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | 4.0 | <ul><li>'스코나 밀러튼 LPM 1400 멀티 교구장 책장 가구/인테리어>서재/사무용가구>책장'</li><li>'이케아 BILLY 빌리 3단 책장 40cm 가구/인테리어>서재/사무용가구>책장'</li><li>'에보니아 로엠 600 3단 하부 도어 책장 가구/인테리어>서재/사무용가구>책장'</li></ul> |
66
+ | 2.0 | <ul><li>'선반 철제 책꽂이 수납 타공판 책상위정리 책장 세트-후크 3 흰색 단층 홀 보드 가구/인테리어>서재/사무용가구>책꽂이'</li><li>'델리 2단 서랍 겸 책꽂이 데스크 손잡이 오거나이저 가구/인테리어>서재/사무용가구>책꽂이'</li><li>'북케이스 책장 수납 선반 북 보관 책꽂이 가구/인테리어>서재/사무용가구>책꽂이'</li></ul> |
67
+ | 3.0 | <ul><li>'209애비뉴 제로데스크 에보 멀티 컴퓨터책상 1600x800 가구/인테리어>서재/사무용가구>책상>컴퓨터책상'</li><li>'한샘 티오 일자책상세트 5단 120x60cm 콘센트형 조명 가구/인테리어>서재/사무용가구>책상>일자형 책상'</li><li>'아씨방 마일드 모션데스크 120cm 가구/인테리어>서재/사무용가구>책상>스탠딩책상'</li></ul> |
68
+ | 0.0 | <ul><li>'하이솔로몬 강의대 LS13 가구/인테리어>서재/사무용가구>사무/교구용가구>사무용책상'</li><li>'사무실쇼파 제논 2인용 소파 가구/인테리어>서재/사무용가구>사무/교구용가구>사무용소파'</li><li>'스테인리스 서랍장 캐비닛 미용실 매장용 사물함 스텐 가구/인테리어>서재/사무용가구>사무/교구용가구>캐비닛'</li></ul> |
69
+ | 1.0 | <ul><li>'접이식 썬베드 간이 낮잠 의자 휴대용 리클라이너 경량 가구/인테리어>서재/사무용가구>의자>안락의자'</li><li>'체스좌식의자 엠보싱 가구/인테리어>서재/사무용가구>의자>좌식의자'</li><li>'나른인 쇼파 손잡이가 달린 침대 위 나부끼창 커밋의자 껴안다 건산수유 의자와 다다미 좌석 가구/인테리어>서재/사무용가구>의자>하이팩의자'</li></ul> |
70
+
71
+ ## Evaluation
72
+
73
+ ### Metrics
74
+ | Label | Accuracy |
75
+ |:--------|:---------|
76
+ | **all** | 1.0 |
77
+
78
+ ## Uses
79
+
80
+ ### Direct Use for Inference
81
+
82
+ First install the SetFit library:
83
+
84
+ ```bash
85
+ pip install setfit
86
+ ```
87
+
88
+ Then you can load this model and run inference.
89
+
90
+ ```python
91
+ from setfit import SetFitModel
92
+
93
+ # Download from the 🤗 Hub
94
+ model = SetFitModel.from_pretrained("mini1013/master_cate_fi3")
95
+ # Run inference
96
+ preds = model("와이디 로아 모던 책상 미드센츄리 테이블 800 가구/인테리어>서재/사무용가구>책상>일자형 책상")
97
+ ```
98
+
99
+ <!--
100
+ ### Downstream Use
101
+
102
+ *List how someone could finetune this model on their own dataset.*
103
+ -->
104
+
105
+ <!--
106
+ ### Out-of-Scope Use
107
+
108
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
109
+ -->
110
+
111
+ <!--
112
+ ## Bias, Risks and Limitations
113
+
114
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
115
+ -->
116
+
117
+ <!--
118
+ ### Recommendations
119
+
120
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
121
+ -->
122
+
123
+ ## Training Details
124
+
125
+ ### Training Set Metrics
126
+ | Training set | Min | Median | Max |
127
+ |:-------------|:----|:-------|:----|
128
+ | Word count | 2 | 8.5543 | 22 |
129
+
130
+ | Label | Training Sample Count |
131
+ |:------|:----------------------|
132
+ | 0.0 | 70 |
133
+ | 1.0 | 70 |
134
+ | 2.0 | 70 |
135
+ | 3.0 | 70 |
136
+ | 4.0 | 70 |
137
+
138
+ ### Training Hyperparameters
139
+ - batch_size: (256, 256)
140
+ - num_epochs: (30, 30)
141
+ - max_steps: -1
142
+ - sampling_strategy: oversampling
143
+ - num_iterations: 50
144
+ - body_learning_rate: (2e-05, 1e-05)
145
+ - head_learning_rate: 0.01
146
+ - loss: CosineSimilarityLoss
147
+ - distance_metric: cosine_distance
148
+ - margin: 0.25
149
+ - end_to_end: False
150
+ - use_amp: False
151
+ - warmup_proportion: 0.1
152
+ - l2_weight: 0.01
153
+ - seed: 42
154
+ - eval_max_steps: -1
155
+ - load_best_model_at_end: False
156
+
157
+ ### Training Results
158
+ | Epoch | Step | Training Loss | Validation Loss |
159
+ |:-------:|:----:|:-------------:|:---------------:|
160
+ | 0.0145 | 1 | 0.4825 | - |
161
+ | 0.7246 | 50 | 0.4985 | - |
162
+ | 1.4493 | 100 | 0.4783 | - |
163
+ | 2.1739 | 150 | 0.1925 | - |
164
+ | 2.8986 | 200 | 0.0024 | - |
165
+ | 3.6232 | 250 | 0.0001 | - |
166
+ | 4.3478 | 300 | 0.0001 | - |
167
+ | 5.0725 | 350 | 0.0001 | - |
168
+ | 5.7971 | 400 | 0.0 | - |
169
+ | 6.5217 | 450 | 0.0 | - |
170
+ | 7.2464 | 500 | 0.0 | - |
171
+ | 7.9710 | 550 | 0.0 | - |
172
+ | 8.6957 | 600 | 0.0 | - |
173
+ | 9.4203 | 650 | 0.0 | - |
174
+ | 10.1449 | 700 | 0.0 | - |
175
+ | 10.8696 | 750 | 0.0 | - |
176
+ | 11.5942 | 800 | 0.0 | - |
177
+ | 12.3188 | 850 | 0.0 | - |
178
+ | 13.0435 | 900 | 0.0 | - |
179
+ | 13.7681 | 950 | 0.0 | - |
180
+ | 14.4928 | 1000 | 0.0 | - |
181
+ | 15.2174 | 1050 | 0.0 | - |
182
+ | 15.9420 | 1100 | 0.0 | - |
183
+ | 16.6667 | 1150 | 0.0 | - |
184
+ | 17.3913 | 1200 | 0.0 | - |
185
+ | 18.1159 | 1250 | 0.0 | - |
186
+ | 18.8406 | 1300 | 0.0 | - |
187
+ | 19.5652 | 1350 | 0.0 | - |
188
+ | 20.2899 | 1400 | 0.0 | - |
189
+ | 21.0145 | 1450 | 0.0 | - |
190
+ | 21.7391 | 1500 | 0.0 | - |
191
+ | 22.4638 | 1550 | 0.0 | - |
192
+ | 23.1884 | 1600 | 0.0 | - |
193
+ | 23.9130 | 1650 | 0.0 | - |
194
+ | 24.6377 | 1700 | 0.0 | - |
195
+ | 25.3623 | 1750 | 0.0 | - |
196
+ | 26.0870 | 1800 | 0.0 | - |
197
+ | 26.8116 | 1850 | 0.0 | - |
198
+ | 27.5362 | 1900 | 0.0 | - |
199
+ | 28.2609 | 1950 | 0.0 | - |
200
+ | 28.9855 | 2000 | 0.0 | - |
201
+ | 29.7101 | 2050 | 0.0 | - |
202
+
203
+ ### Framework Versions
204
+ - Python: 3.10.12
205
+ - SetFit: 1.1.0
206
+ - Sentence Transformers: 3.3.1
207
+ - Transformers: 4.44.2
208
+ - PyTorch: 2.2.0a0+81ea7a4
209
+ - Datasets: 3.2.0
210
+ - Tokenizers: 0.19.1
211
+
212
+ ## Citation
213
+
214
+ ### BibTeX
215
+ ```bibtex
216
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
217
+ doi = {10.48550/ARXIV.2209.11055},
218
+ url = {https://arxiv.org/abs/2209.11055},
219
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
220
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
221
+ title = {Efficient Few-Shot Learning Without Prompts},
222
+ publisher = {arXiv},
223
+ year = {2022},
224
+ copyright = {Creative Commons Attribution 4.0 International}
225
+ }
226
+ ```
227
+
228
+ <!--
229
+ ## Glossary
230
+
231
+ *Clearly define terms in order to be accessible across audiences.*
232
+ -->
233
+
234
+ <!--
235
+ ## Model Card Authors
236
+
237
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
238
+ -->
239
+
240
+ <!--
241
+ ## Model Card Contact
242
+
243
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
244
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_fi",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.44.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.2.0a0+81ea7a4"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8dd7a25a5a6d1b8ae6d1e9c1062f5961ec74a7a3d50f59d6b1ba2af14945959
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4f0d25450e05990a34f66082565435042f7e79ec19a94834d8e06a6670233e0
3
+ size 31615
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff