mini1013 commited on
Commit
d92dafa
·
verified ·
1 Parent(s): 43a0c65

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,243 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mini1013/master_domain
3
+ library_name: setfit
4
+ metrics:
5
+ - metric
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: 동아제약 가그린 오리지널 가글 750ml (1개) 가그린 오리지널 820ml L스토어
14
+ - text: 스켈링 입냄새 스케일러 치석제거기 구강청결기 치아 별이 빛나는 하늘 보라색 사치(sachi)
15
+ - text: 텅브러쉬 4개세트 혀클리너 입냄새제거 혀백태제거 혀칫솔 i MinSellAmount 펀키보이
16
+ - text: '[갤러리아] 폴리덴트 의치 부착재 민트향 70g x5개 한화갤러리아(주)'
17
+ - text: 애터미 치약 프로폴리스 200g 입냄새 제거 미백 콜마 플렉스세븐
18
+ inference: true
19
+ model-index:
20
+ - name: SetFit with mini1013/master_domain
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: metric
31
+ value: 0.9477272727272728
32
+ name: Metric
33
+ ---
34
+
35
+ # SetFit with mini1013/master_domain
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Number of Classes:** 10 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | 9.0 | <ul><li>'롤리팝 에디슨 항균 혀클리너 4종 퍼플 파랑새랑'</li><li>'텅브러쉬 혀클리너 입냄새제거 백태제거 혀칫솔 MinSellAmount 펀키보이'</li><li>'[생활도감] 혀클리너 세트 그린2개+네이비2개 주식회사 생활도감'</li></ul> |
66
+ | 2.0 | <ul><li>'셀프 가정용 스테인레스 스케일링 치석제거기 청소 도구 304 핑크 6종 세트 주식회사 클라우드'</li><li>'도구 치경 제거 편도석 제거기 입똥 편도결석 목똥 셀프 발광 귀걸이x수납함 로얄산티아고'</li><li>'소형 구취 측정기 테스트기 휴대용 냄새 악취 호흡 구강 입냄새측정기 자가진단 자가 가스 표준모델 _ 검정 행복초지'</li></ul> |
67
+ | 0.0 | <ul><li>'존슨앤존슨 구강청결 리스테린 쿨민트 250ml 후레쉬버스트 250ml - 1개 디아크코리아'</li><li>'일회용 여행용 가그린 라임10g 1개 휴대용 오리지널 가글스틱 오리지널 1개 예그린스페이스'</li><li>'가그린 제로 1200ML 쓱1day배송'</li></ul> |
68
+ | 4.0 | <ul><li>'투스노트 화이트닝겔 하루 2번 30분 투자로 누런이를 하얗게 투스노트 화이트닝겔 2주분 주식회사 네이처폴'</li><li>'루치펠로 미스틱포레스트 치약 180g 5개 원라이브팩토리'</li><li>'대형 치아모형 치아 모델 구조 인체 구강 치과 C. 구강 2배 확대(하아 제거 가능) 마켓 스페이스토끼'</li></ul> |
69
+ | 8.0 | <ul><li>'미소덴탈 교정장치보관함 교정기케이스 교정기통 교정기보관함-옐로우 (주)톡톡그린'</li><li>'성심 덴트크린 틀니세정제 36개입 2개 교정기 세척 희망메디'</li><li>'폴리덴트 맥스 씰 의치 부착재(의치 접착���) 70gx5개+샘플 1개 더마켓'</li></ul> |
70
+ | 6.0 | <ul><li>'백선생 왕타칫솔 베이직 스톤 10P 왕타'</li><li>'켄트칫솔 클래식 6개입 부드러운 칫솔 미세모 치아관리 어금니 치과칫솔 켄트 클래식 6개_켄트 탄 초극세모 1개(랜덤)_치간칫솔 8개입 1세트(레드 0.7mm) (주)지로인터내셔널'</li><li>'쿤달 딥 클린 탄력 항균 이중미세모 칫솔 부드러운모, 16입, 1개 구분 : 부드러운모 슈팅배송'</li></ul> |
71
+ | 3.0 | <ul><li>'오랄비 P&G 왁스치실 민트향 50m 01.왁스 치실 민트향 50m TH상사'</li><li>'오랄비 C자형 일회용 치실 30개입 1팩 NEW)치실C자 30개입[O121] 한국피앤지판매유한회사'</li><li>'오랄비 왁스치실 (50m 1개) 민트 디엔지유통'</li></ul> |
72
+ | 5.0 | <ul><li>'LG생활건강 죽염 명약원 골든프로폴리스 치약 플러스 120g MinSellAmount 오늘도연구소'</li><li>'엘지생활건강 죽염 잇몸고 치약 120g 1개 유니스'</li><li>'센소다인 오리지널 플러스 치약 100g 1개 dm 다임커머스'</li></ul> |
73
+ | 7.0 | <ul><li>'[유한양행]닥터버들 치약+칫솔 여행용세트 6개 신세계몰'</li><li>'[유한양행]닥터버들 휴대용 칫솔치약세트 1개 신세계몰'</li><li>'투톤 휴대용 칫솔 치약 케이스 캡슐형 답례품 투톤용 칫솔통 보관함 홀더 칫솔캡 캡슐칫 화이트블루 쏭리빙'</li></ul> |
74
+ | 1.0 | <ul><li>'일제 형상기억 마우스피스 아리더샾'</li><li>'혀용 코골이 방지 용품 대책용 마우스피스 8 개 세트 이와이리테일(EY리테일)'</li><li>'이갈이방지 치아 앞니 보호 유지 셀프 마우스피스 교정 2단계 코스모스'</li></ul> |
75
+
76
+ ## Evaluation
77
+
78
+ ### Metrics
79
+ | Label | Metric |
80
+ |:--------|:-------|
81
+ | **all** | 0.9477 |
82
+
83
+ ## Uses
84
+
85
+ ### Direct Use for Inference
86
+
87
+ First install the SetFit library:
88
+
89
+ ```bash
90
+ pip install setfit
91
+ ```
92
+
93
+ Then you can load this model and run inference.
94
+
95
+ ```python
96
+ from setfit import SetFitModel
97
+
98
+ # Download from the 🤗 Hub
99
+ model = SetFitModel.from_pretrained("mini1013/master_cate_lh4")
100
+ # Run inference
101
+ preds = model("애터미 치약 프로폴리스 200g 입냄새 제거 미백 콜마 플렉스세븐")
102
+ ```
103
+
104
+ <!--
105
+ ### Downstream Use
106
+
107
+ *List how someone could finetune this model on their own dataset.*
108
+ -->
109
+
110
+ <!--
111
+ ### Out-of-Scope Use
112
+
113
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
114
+ -->
115
+
116
+ <!--
117
+ ## Bias, Risks and Limitations
118
+
119
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
120
+ -->
121
+
122
+ <!--
123
+ ### Recommendations
124
+
125
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
126
+ -->
127
+
128
+ ## Training Details
129
+
130
+ ### Training Set Metrics
131
+ | Training set | Min | Median | Max |
132
+ |:-------------|:----|:-------|:----|
133
+ | Word count | 3 | 10.026 | 23 |
134
+
135
+ | Label | Training Sample Count |
136
+ |:------|:----------------------|
137
+ | 0.0 | 50 |
138
+ | 1.0 | 50 |
139
+ | 2.0 | 50 |
140
+ | 3.0 | 50 |
141
+ | 4.0 | 50 |
142
+ | 5.0 | 50 |
143
+ | 6.0 | 50 |
144
+ | 7.0 | 50 |
145
+ | 8.0 | 50 |
146
+ | 9.0 | 50 |
147
+
148
+ ### Training Hyperparameters
149
+ - batch_size: (512, 512)
150
+ - num_epochs: (20, 20)
151
+ - max_steps: -1
152
+ - sampling_strategy: oversampling
153
+ - num_iterations: 40
154
+ - body_learning_rate: (2e-05, 2e-05)
155
+ - head_learning_rate: 2e-05
156
+ - loss: CosineSimilarityLoss
157
+ - distance_metric: cosine_distance
158
+ - margin: 0.25
159
+ - end_to_end: False
160
+ - use_amp: False
161
+ - warmup_proportion: 0.1
162
+ - seed: 42
163
+ - eval_max_steps: -1
164
+ - load_best_model_at_end: False
165
+
166
+ ### Training Results
167
+ | Epoch | Step | Training Loss | Validation Loss |
168
+ |:-------:|:----:|:-------------:|:---------------:|
169
+ | 0.0127 | 1 | 0.4686 | - |
170
+ | 0.6329 | 50 | 0.2751 | - |
171
+ | 1.2658 | 100 | 0.1179 | - |
172
+ | 1.8987 | 150 | 0.0739 | - |
173
+ | 2.5316 | 200 | 0.0687 | - |
174
+ | 3.1646 | 250 | 0.0466 | - |
175
+ | 3.7975 | 300 | 0.0591 | - |
176
+ | 4.4304 | 350 | 0.0232 | - |
177
+ | 5.0633 | 400 | 0.0125 | - |
178
+ | 5.6962 | 450 | 0.0134 | - |
179
+ | 6.3291 | 500 | 0.0152 | - |
180
+ | 6.9620 | 550 | 0.0175 | - |
181
+ | 7.5949 | 600 | 0.0118 | - |
182
+ | 8.2278 | 650 | 0.007 | - |
183
+ | 8.8608 | 700 | 0.0003 | - |
184
+ | 9.4937 | 750 | 0.0002 | - |
185
+ | 10.1266 | 800 | 0.0001 | - |
186
+ | 10.7595 | 850 | 0.0001 | - |
187
+ | 11.3924 | 900 | 0.0001 | - |
188
+ | 12.0253 | 950 | 0.0001 | - |
189
+ | 12.6582 | 1000 | 0.0001 | - |
190
+ | 13.2911 | 1050 | 0.0001 | - |
191
+ | 13.9241 | 1100 | 0.0001 | - |
192
+ | 14.5570 | 1150 | 0.0001 | - |
193
+ | 15.1899 | 1200 | 0.0001 | - |
194
+ | 15.8228 | 1250 | 0.0001 | - |
195
+ | 16.4557 | 1300 | 0.0001 | - |
196
+ | 17.0886 | 1350 | 0.0001 | - |
197
+ | 17.7215 | 1400 | 0.0001 | - |
198
+ | 18.3544 | 1450 | 0.0001 | - |
199
+ | 18.9873 | 1500 | 0.0 | - |
200
+ | 19.6203 | 1550 | 0.0 | - |
201
+
202
+ ### Framework Versions
203
+ - Python: 3.10.12
204
+ - SetFit: 1.1.0.dev0
205
+ - Sentence Transformers: 3.1.1
206
+ - Transformers: 4.46.1
207
+ - PyTorch: 2.4.0+cu121
208
+ - Datasets: 2.20.0
209
+ - Tokenizers: 0.20.0
210
+
211
+ ## Citation
212
+
213
+ ### BibTeX
214
+ ```bibtex
215
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
216
+ doi = {10.48550/ARXIV.2209.11055},
217
+ url = {https://arxiv.org/abs/2209.11055},
218
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
219
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
220
+ title = {Efficient Few-Shot Learning Without Prompts},
221
+ publisher = {arXiv},
222
+ year = {2022},
223
+ copyright = {Creative Commons Attribution 4.0 International}
224
+ }
225
+ ```
226
+
227
+ <!--
228
+ ## Glossary
229
+
230
+ *Clearly define terms in order to be accessible across audiences.*
231
+ -->
232
+
233
+ <!--
234
+ ## Model Card Authors
235
+
236
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
237
+ -->
238
+
239
+ <!--
240
+ ## Model Card Contact
241
+
242
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
243
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_lh",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.46.1",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.46.1",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:75c6d310733c5de6f4d496fa3c8a635744cdae43c4477905dae3e195128e6b60
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ccc7468f98d5316e3950cee323c8eebd6861f085912917039b4cd945c9436c4b
3
+ size 62407
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff