mini1013 commited on
Commit
f12f56c
·
verified ·
1 Parent(s): 9de910b

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,212 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mini1013/master_domain
3
+ library_name: setfit
4
+ metrics:
5
+ - metric
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: 선인장 소프트렌즈 렌즈세척기 수동 셀프 세척 필수선택_핑크 은총에벤에셀
14
+ - text: '[멕리듬]메구리즘/멕리듬 아이마스크 수면안대 12입 5.잘 익은 유자향 12P 롯데아이몰'
15
+ - text: 교체용 케이스 소프트 집게 거울 콘텍트 세트 블루 슈가랜드
16
+ - text: 보아르 아이워시 초음파 안경 렌즈세척기 눈에보이지 않는 각종 세균 99.7% 완벽세척 화이트 U0001 오아 주식회사
17
+ - text: 안대 야옹이 찜질 2종 눈찜질 여행 수면 캐릭터 블랙 엠포엘
18
+ inference: true
19
+ model-index:
20
+ - name: SetFit with mini1013/master_domain
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: metric
31
+ value: 0.9615384615384616
32
+ name: Metric
33
+ ---
34
+
35
+ # SetFit with mini1013/master_domain
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Number of Classes:** 4 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | 3.0 | <ul><li>'굿나잇 온열안대 수면안대 눈찜질 눈찜질기 눈찜질팩 MinSellAmount 오아월드'</li><li>'[대구백화점] [누리아이]안구건조증 치료의료기기 누리아이 5800 (위생용시트지 1박스 ) 누리아이 5800 대구백화점'</li><li>'동국제약 굿잠 스팀안대 3박스 수면 온열안대 (무향/카모마일향 선택) 1_무향 3박스_AA 동국제약_본사직영'</li></ul> |
66
+ | 0.0 | <ul><li>'렌즈집게 렌즈 넣는 집게 끼는 도구 흡착봉 소프트 렌즈집게(핑크) 썬더딜'</li><li>'메루루 원데이 소프트렌즈 집게 착용 분리 기구 1세트 MinSellAmount 체리팝스'</li><li>'소프트 통 케이스 빼는도구 접시 용품 흡착봉 뽁뽁이 보관통 하드 렌즈통(블루) 기쁘다희샵'</li></ul> |
67
+ | 2.0 | <ul><li>'초음파 변환장치 진동기 식기 세척기 진동판 생성기 초음파발생기 변환기 D. 20-40K1800W (비고 주파수) 메타몰'</li><li>'새한 초음파세정기 SH-1050 / 28kHz / 1.2L / 신제품 주식회사 전자코리아'</li><li>'새한 디지털 초음파 세척기 세정기 SH-1050D 안경 렌즈 귀금속 세척기 서진하이텍'</li></ul> |
68
+ | 1.0 | <ul><li>'휴먼바이오 식염수 중외제약 셀라인 식염수 370ml 20개, 드림 하드 렌즈용 생리 식염수 가이아코리아 휴먼바이오 식염수 500ml 20개 가이아코리아(Gaia Korea)'</li><li>'리뉴 센서티브 355ml 씨채널안경체인태백점'</li><li>'바슈롬 바이오트루 300ml 쏜 상점'</li></ul> |
69
+
70
+ ## Evaluation
71
+
72
+ ### Metrics
73
+ | Label | Metric |
74
+ |:--------|:-------|
75
+ | **all** | 0.9615 |
76
+
77
+ ## Uses
78
+
79
+ ### Direct Use for Inference
80
+
81
+ First install the SetFit library:
82
+
83
+ ```bash
84
+ pip install setfit
85
+ ```
86
+
87
+ Then you can load this model and run inference.
88
+
89
+ ```python
90
+ from setfit import SetFitModel
91
+
92
+ # Download from the 🤗 Hub
93
+ model = SetFitModel.from_pretrained("mini1013/master_cate_lh6")
94
+ # Run inference
95
+ preds = model("교체용 케이스 소프트 집게 거울 콘텍트 세트 블루 슈가랜드")
96
+ ```
97
+
98
+ <!--
99
+ ### Downstream Use
100
+
101
+ *List how someone could finetune this model on their own dataset.*
102
+ -->
103
+
104
+ <!--
105
+ ### Out-of-Scope Use
106
+
107
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
108
+ -->
109
+
110
+ <!--
111
+ ## Bias, Risks and Limitations
112
+
113
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
114
+ -->
115
+
116
+ <!--
117
+ ### Recommendations
118
+
119
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
120
+ -->
121
+
122
+ ## Training Details
123
+
124
+ ### Training Set Metrics
125
+ | Training set | Min | Median | Max |
126
+ |:-------------|:----|:-------|:----|
127
+ | Word count | 3 | 9.705 | 19 |
128
+
129
+ | Label | Training Sample Count |
130
+ |:------|:----------------------|
131
+ | 0.0 | 50 |
132
+ | 1.0 | 50 |
133
+ | 2.0 | 50 |
134
+ | 3.0 | 50 |
135
+
136
+ ### Training Hyperparameters
137
+ - batch_size: (512, 512)
138
+ - num_epochs: (20, 20)
139
+ - max_steps: -1
140
+ - sampling_strategy: oversampling
141
+ - num_iterations: 40
142
+ - body_learning_rate: (2e-05, 2e-05)
143
+ - head_learning_rate: 2e-05
144
+ - loss: CosineSimilarityLoss
145
+ - distance_metric: cosine_distance
146
+ - margin: 0.25
147
+ - end_to_end: False
148
+ - use_amp: False
149
+ - warmup_proportion: 0.1
150
+ - seed: 42
151
+ - eval_max_steps: -1
152
+ - load_best_model_at_end: False
153
+
154
+ ### Training Results
155
+ | Epoch | Step | Training Loss | Validation Loss |
156
+ |:-------:|:----:|:-------------:|:---------------:|
157
+ | 0.0312 | 1 | 0.4002 | - |
158
+ | 1.5625 | 50 | 0.064 | - |
159
+ | 3.125 | 100 | 0.0021 | - |
160
+ | 4.6875 | 150 | 0.0004 | - |
161
+ | 6.25 | 200 | 0.0001 | - |
162
+ | 7.8125 | 250 | 0.0001 | - |
163
+ | 9.375 | 300 | 0.0 | - |
164
+ | 10.9375 | 350 | 0.0 | - |
165
+ | 12.5 | 400 | 0.0 | - |
166
+ | 14.0625 | 450 | 0.0 | - |
167
+ | 15.625 | 500 | 0.0 | - |
168
+ | 17.1875 | 550 | 0.0 | - |
169
+ | 18.75 | 600 | 0.0 | - |
170
+
171
+ ### Framework Versions
172
+ - Python: 3.10.12
173
+ - SetFit: 1.1.0.dev0
174
+ - Sentence Transformers: 3.1.1
175
+ - Transformers: 4.46.1
176
+ - PyTorch: 2.4.0+cu121
177
+ - Datasets: 2.20.0
178
+ - Tokenizers: 0.20.0
179
+
180
+ ## Citation
181
+
182
+ ### BibTeX
183
+ ```bibtex
184
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
185
+ doi = {10.48550/ARXIV.2209.11055},
186
+ url = {https://arxiv.org/abs/2209.11055},
187
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
188
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
189
+ title = {Efficient Few-Shot Learning Without Prompts},
190
+ publisher = {arXiv},
191
+ year = {2022},
192
+ copyright = {Creative Commons Attribution 4.0 International}
193
+ }
194
+ ```
195
+
196
+ <!--
197
+ ## Glossary
198
+
199
+ *Clearly define terms in order to be accessible across audiences.*
200
+ -->
201
+
202
+ <!--
203
+ ## Model Card Authors
204
+
205
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
206
+ -->
207
+
208
+ <!--
209
+ ## Model Card Contact
210
+
211
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
212
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_lh",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.46.1",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.46.1",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a34e27b606ce9d22dac124d0ee5de7a58da94d48ea33196ed01a955481e98371
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e3a4f683280ae03c36f12e2ac9ebaa45e65d81a34d6e0029ccf43682f49b404
3
+ size 25447
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff