mini1013 commited on
Commit
5c81be1
·
verified ·
1 Parent(s): 287dc1d

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,182 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - setfit
4
+ - sentence-transformers
5
+ - text-classification
6
+ - generated_from_setfit_trainer
7
+ widget:
8
+ - text: 군용 단검 스포츠/레저>무술용품>목검/가검
9
+ - text: 에버라스트 초보연습용 스폰지쌍절곤 스포츠/레저 > 무술용품 > 봉/곤/창
10
+ - text: 봉술 나무봉 수련용 창술 막대 훈련 등봉 연습용 장봉 블랙 스포츠/레저 > 무술용품 > 봉/곤/창
11
+ - text: 홈목검C-27 스포츠/레저>무술용품>목검/가검
12
+ - text: 태극권 수련 훈련 무술 장비 나무 봉 창 닌자풍실막대 이소룡 단봉 흑단목 필리핀 스포츠/레저 > 무술용품 > 봉/곤/창
13
+ metrics:
14
+ - accuracy
15
+ pipeline_tag: text-classification
16
+ library_name: setfit
17
+ inference: true
18
+ base_model: mini1013/master_domain
19
+ ---
20
+
21
+ # SetFit with mini1013/master_domain
22
+
23
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
24
+
25
+ The model has been trained using an efficient few-shot learning technique that involves:
26
+
27
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
28
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
29
+
30
+ ## Model Details
31
+
32
+ ### Model Description
33
+ - **Model Type:** SetFit
34
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
35
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
36
+ - **Maximum Sequence Length:** 512 tokens
37
+ - **Number of Classes:** 3 classes
38
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
39
+ <!-- - **Language:** Unknown -->
40
+ <!-- - **License:** Unknown -->
41
+
42
+ ### Model Sources
43
+
44
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
45
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
46
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
47
+
48
+ ### Model Labels
49
+ | Label | Examples |
50
+ |:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
51
+ | 2.0 | <ul><li>'봉술 나무봉 수련용 창술 막대 훈련 등봉 연습용 장봉 블랙 스포츠/레저 > 무술용품 > 봉/곤/창'</li><li>'에버라스트 초보연습용 스폰지쌍절곤 스포츠/레저 > 무술용품 > 봉/곤/창'</li><li>'프로칸 25cm 스폰지 쌍절곤 쌍절봉 안전 연습용 수련용 호신용 가벼운 초급자용 스포츠/레저 > 무술용품 > 봉/곤/창'</li></ul> |
52
+ | 1.0 | <ul><li>'켄신 중도 스포츠/레저>무술용품>목검/가검'</li><li>'초장도 스포츠/레저>무술용품>목검/가검'</li><li>'대조영도검 스포츠/레저>무술용품>목검/가검'</li></ul> |
53
+ | 0.0 | <ul><li>'무술 창 연극 소품 기타무술용품 스포츠/레저 > 무술용품 > 기타무술용품'</li><li>'무술 창 연극 소품 기타무술용품 P 1개 스포츠/레저 > 무술용품 > 기타무술용품'</li><li>'죽선 D-1 대나무 부채 부채술 무술용품 스포츠/레저 > 무술용품 > 기타무술용품'</li></ul> |
54
+
55
+ ## Uses
56
+
57
+ ### Direct Use for Inference
58
+
59
+ First install the SetFit library:
60
+
61
+ ```bash
62
+ pip install setfit
63
+ ```
64
+
65
+ Then you can load this model and run inference.
66
+
67
+ ```python
68
+ from setfit import SetFitModel
69
+
70
+ # Download from the 🤗 Hub
71
+ model = SetFitModel.from_pretrained("mini1013/master_cate_sl10")
72
+ # Run inference
73
+ preds = model("군용 단검 스포츠/레저>무술용품>목검/가검")
74
+ ```
75
+
76
+ <!--
77
+ ### Downstream Use
78
+
79
+ *List how someone could finetune this model on their own dataset.*
80
+ -->
81
+
82
+ <!--
83
+ ### Out-of-Scope Use
84
+
85
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
86
+ -->
87
+
88
+ <!--
89
+ ## Bias, Risks and Limitations
90
+
91
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
92
+ -->
93
+
94
+ <!--
95
+ ### Recommendations
96
+
97
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
98
+ -->
99
+
100
+ ## Training Details
101
+
102
+ ### Training Set Metrics
103
+ | Training set | Min | Median | Max |
104
+ |:-------------|:----|:-------|:----|
105
+ | Word count | 2 | 8.9677 | 18 |
106
+
107
+ | Label | Training Sample Count |
108
+ |:------|:----------------------|
109
+ | 0.0 | 10 |
110
+ | 1.0 | 9 |
111
+ | 2.0 | 12 |
112
+
113
+ ### Training Hyperparameters
114
+ - batch_size: (256, 256)
115
+ - num_epochs: (30, 30)
116
+ - max_steps: -1
117
+ - sampling_strategy: oversampling
118
+ - num_iterations: 50
119
+ - body_learning_rate: (2e-05, 1e-05)
120
+ - head_learning_rate: 0.01
121
+ - loss: CosineSimilarityLoss
122
+ - distance_metric: cosine_distance
123
+ - margin: 0.25
124
+ - end_to_end: False
125
+ - use_amp: False
126
+ - warmup_proportion: 0.1
127
+ - l2_weight: 0.01
128
+ - seed: 42
129
+ - eval_max_steps: -1
130
+ - load_best_model_at_end: False
131
+
132
+ ### Training Results
133
+ | Epoch | Step | Training Loss | Validation Loss |
134
+ |:-------:|:----:|:-------------:|:---------------:|
135
+ | 0.1429 | 1 | 0.4962 | - |
136
+ | 7.1429 | 50 | 0.1601 | - |
137
+ | 14.2857 | 100 | 0.0001 | - |
138
+ | 21.4286 | 150 | 0.0 | - |
139
+ | 28.5714 | 200 | 0.0 | - |
140
+
141
+ ### Framework Versions
142
+ - Python: 3.10.12
143
+ - SetFit: 1.1.0
144
+ - Sentence Transformers: 3.3.1
145
+ - Transformers: 4.44.2
146
+ - PyTorch: 2.2.0a0+81ea7a4
147
+ - Datasets: 3.2.0
148
+ - Tokenizers: 0.19.1
149
+
150
+ ## Citation
151
+
152
+ ### BibTeX
153
+ ```bibtex
154
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
155
+ doi = {10.48550/ARXIV.2209.11055},
156
+ url = {https://arxiv.org/abs/2209.11055},
157
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
158
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
159
+ title = {Efficient Few-Shot Learning Without Prompts},
160
+ publisher = {arXiv},
161
+ year = {2022},
162
+ copyright = {Creative Commons Attribution 4.0 International}
163
+ }
164
+ ```
165
+
166
+ <!--
167
+ ## Glossary
168
+
169
+ *Clearly define terms in order to be accessible across audiences.*
170
+ -->
171
+
172
+ <!--
173
+ ## Model Card Authors
174
+
175
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
176
+ -->
177
+
178
+ <!--
179
+ ## Model Card Contact
180
+
181
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
182
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_sl_org_gtcate",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.44.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.2.0a0+81ea7a4"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0502126121bfa0f14810d846e9aaaffe04c045e0476eca642897b3421abda090
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e2542eae06c73a6fd311e709b3eb16d41388cebea7b686017ed0f0573e7e92a
3
+ size 19295
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff