Push model using huggingface_hub.
Browse files- 1_Pooling/config.json +10 -0
- README.md +254 -0
- config.json +29 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +4 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +66 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,254 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- setfit
|
4 |
+
- sentence-transformers
|
5 |
+
- text-classification
|
6 |
+
- generated_from_setfit_trainer
|
7 |
+
widget:
|
8 |
+
- text: 발열양말 방한 보온양말 등산 낚시 스키 스노우보드 스케이트 야외작업 스포츠/레저>스키/보드>스키/보드방한용품>양말
|
9 |
+
- text: 무크 엠 무크 펠로 데크 다크네이비 517413203ZB 스포츠/레저>스키/보드>스노보드장비>데크
|
10 |
+
- text: 스키복 성인 자켓 상의 여성용 JACKET 스키자켓 남성 스포츠/레저>스키/보드>스키복>상의
|
11 |
+
- text: Toko Edge Tuner Pro 스노우보드 엣지 튜닝 컷팅 스포츠/레저>스키/보드>스키/보드용품>보수장비
|
12 |
+
- text: 헬리아 주니어 고글 카이로스 무광퍼플블랙 보드고글 스포츠고글 스포츠/레저>스키/보드>스키/보드용품>고글
|
13 |
+
metrics:
|
14 |
+
- accuracy
|
15 |
+
pipeline_tag: text-classification
|
16 |
+
library_name: setfit
|
17 |
+
inference: true
|
18 |
+
base_model: mini1013/master_domain
|
19 |
+
model-index:
|
20 |
+
- name: SetFit with mini1013/master_domain
|
21 |
+
results:
|
22 |
+
- task:
|
23 |
+
type: text-classification
|
24 |
+
name: Text Classification
|
25 |
+
dataset:
|
26 |
+
name: Unknown
|
27 |
+
type: unknown
|
28 |
+
split: test
|
29 |
+
metrics:
|
30 |
+
- type: accuracy
|
31 |
+
value: 1.0
|
32 |
+
name: Accuracy
|
33 |
+
---
|
34 |
+
|
35 |
+
# SetFit with mini1013/master_domain
|
36 |
+
|
37 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
38 |
+
|
39 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
40 |
+
|
41 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
42 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
43 |
+
|
44 |
+
## Model Details
|
45 |
+
|
46 |
+
### Model Description
|
47 |
+
- **Model Type:** SetFit
|
48 |
+
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
|
49 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
50 |
+
- **Maximum Sequence Length:** 512 tokens
|
51 |
+
- **Number of Classes:** 6 classes
|
52 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
53 |
+
<!-- - **Language:** Unknown -->
|
54 |
+
<!-- - **License:** Unknown -->
|
55 |
+
|
56 |
+
### Model Sources
|
57 |
+
|
58 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
59 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
60 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
61 |
+
|
62 |
+
### Model Labels
|
63 |
+
| Label | Examples |
|
64 |
+
|:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
65 |
+
| 2.0 | <ul><li>'충전식 열선양말 발열 스키장 보드 스키 등산 스포츠/레저>스키/보드>스키/보드방한용품>양말'</li><li>'우주마켓 겨울 방한 마스크 보온 등산 골프 따뜻한 자전거 귀덮개 귀마개 마스크 스포츠/레저>스키/보드>스키/보드방한용품>귀마개'</li><li>'다이나핏 폴디드 스몰로고 비니 Dark 스포츠/레저>스키/보드>스키/보드방한용품>비니'</li></ul> |
|
66 |
+
| 0.0 | <ul><li>'방풍 방수 여성 스노우 보드 플레이 여자 복 어스투 점퍼 점프 슈트 수트 스키 가프 스포츠/레저>스키/보드>보드복>재킷'</li><li>'2023 여성용 원피스 스키 슈트 겨울 야외 스포츠 방풍 방수 보온 스노보드 점프슈트 스포츠/레저>스키/보드>보드복>상하세트'</li><li>'여성용 스노우보드 점프수트 여성 일체형 스키복 방 -남성용 민트 그린 수트 스포츠/레저>스키/보드>보드복>상하세트'</li></ul> |
|
67 |
+
| 5.0 | <ul><li>'2223 헤드 스키 PURE JOY 여성용 스포츠/레저>스키/보드>스키장비>플레이트'</li><li>'미니 스키 부츠 스케이트 썰매 스노우 숏부츠 스포츠/레저>스키/보드>스키장비>부츠'</li><li>'PHOENIX 피닉스 주니어 스키 팀복 2223 PHENIX KOREA JR TEAM RD 스포츠/레저>스키/보드>스키장비>플레이트'</li></ul> |
|
68 |
+
| 4.0 | <ul><li>'스키복 세트 여성 남성 방한 방풍 스포츠/레저>스키/보드>스키복>상하세트'</li><li>'스파이더 남성 보르미오 GTX 스키 팬츠 SPFWCISP401MBLK LE1216929158 스포츠/레저>스키/보드>스키복>하의'</li><li>'카르포스 스키바지 남자 겨울 2521013 스포츠/레저>스키/보드>스키복>하의'</li></ul> |
|
69 |
+
| 3.0 | <ul><li>'XCMAN 4겹콘 스터드 디아 7 87인치 알루미늄 스노우보드 스톰프 패드 9pcs 스포츠/레저>스키/보드>스키/보드용품>스티커용품'</li><li>'Thule RoundTrip 스키 스노보드 더플 백 90L 다크 슬레이트 142322 스포츠/레저>스키/보드>스키/보드용품>보드가방'</li><li>'ToeJamR 스노우보드 스톰프 패드 나비 스포츠/레저>스키/보드>스키/보드용품>스티커용품'</li></ul> |
|
70 |
+
| 1.0 | <ul><li>'스노우 스키 여성 부츠 보드 롱 털 따듯한 스노보드 스포츠/레저>스키/보드>스노보드장비>부츠'</li><li>'나이트로 팀 바인딩 2223 NITRO Team 스포츠/레저>스키/보드>스노보드장비>바인딩'</li><li>'헌터 WOMEN 인트레피드 리플렉티브 카모 숏 스노우부츠 - 패턴그레이 WFS1004PCTPTG 스포츠/레저>스키/보드>스노보드장비>부츠'</li></ul> |
|
71 |
+
|
72 |
+
## Evaluation
|
73 |
+
|
74 |
+
### Metrics
|
75 |
+
| Label | Accuracy |
|
76 |
+
|:--------|:---------|
|
77 |
+
| **all** | 1.0 |
|
78 |
+
|
79 |
+
## Uses
|
80 |
+
|
81 |
+
### Direct Use for Inference
|
82 |
+
|
83 |
+
First install the SetFit library:
|
84 |
+
|
85 |
+
```bash
|
86 |
+
pip install setfit
|
87 |
+
```
|
88 |
+
|
89 |
+
Then you can load this model and run inference.
|
90 |
+
|
91 |
+
```python
|
92 |
+
from setfit import SetFitModel
|
93 |
+
|
94 |
+
# Download from the 🤗 Hub
|
95 |
+
model = SetFitModel.from_pretrained("mini1013/master_cate_sl19")
|
96 |
+
# Run inference
|
97 |
+
preds = model("스키복 성인 자켓 상의 여성용 JACKET 스키자켓 남성 스포츠/레저>스키/보드>스키복>상의")
|
98 |
+
```
|
99 |
+
|
100 |
+
<!--
|
101 |
+
### Downstream Use
|
102 |
+
|
103 |
+
*List how someone could finetune this model on their own dataset.*
|
104 |
+
-->
|
105 |
+
|
106 |
+
<!--
|
107 |
+
### Out-of-Scope Use
|
108 |
+
|
109 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
110 |
+
-->
|
111 |
+
|
112 |
+
<!--
|
113 |
+
## Bias, Risks and Limitations
|
114 |
+
|
115 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
116 |
+
-->
|
117 |
+
|
118 |
+
<!--
|
119 |
+
### Recommendations
|
120 |
+
|
121 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
122 |
+
-->
|
123 |
+
|
124 |
+
## Training Details
|
125 |
+
|
126 |
+
### Training Set Metrics
|
127 |
+
| Training set | Min | Median | Max |
|
128 |
+
|:-------------|:----|:-------|:----|
|
129 |
+
| Word count | 4 | 9.4619 | 18 |
|
130 |
+
|
131 |
+
| Label | Training Sample Count |
|
132 |
+
|:------|:----------------------|
|
133 |
+
| 0.0 | 70 |
|
134 |
+
| 1.0 | 70 |
|
135 |
+
| 2.0 | 70 |
|
136 |
+
| 3.0 | 70 |
|
137 |
+
| 4.0 | 70 |
|
138 |
+
| 5.0 | 70 |
|
139 |
+
|
140 |
+
### Training Hyperparameters
|
141 |
+
- batch_size: (256, 256)
|
142 |
+
- num_epochs: (30, 30)
|
143 |
+
- max_steps: -1
|
144 |
+
- sampling_strategy: oversampling
|
145 |
+
- num_iterations: 50
|
146 |
+
- body_learning_rate: (2e-05, 1e-05)
|
147 |
+
- head_learning_rate: 0.01
|
148 |
+
- loss: CosineSimilarityLoss
|
149 |
+
- distance_metric: cosine_distance
|
150 |
+
- margin: 0.25
|
151 |
+
- end_to_end: False
|
152 |
+
- use_amp: False
|
153 |
+
- warmup_proportion: 0.1
|
154 |
+
- l2_weight: 0.01
|
155 |
+
- seed: 42
|
156 |
+
- eval_max_steps: -1
|
157 |
+
- load_best_model_at_end: False
|
158 |
+
|
159 |
+
### Training Results
|
160 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
161 |
+
|:-------:|:----:|:-------------:|:---------------:|
|
162 |
+
| 0.0120 | 1 | 0.4926 | - |
|
163 |
+
| 0.6024 | 50 | 0.497 | - |
|
164 |
+
| 1.2048 | 100 | 0.5003 | - |
|
165 |
+
| 1.8072 | 150 | 0.1918 | - |
|
166 |
+
| 2.4096 | 200 | 0.0218 | - |
|
167 |
+
| 3.0120 | 250 | 0.0004 | - |
|
168 |
+
| 3.6145 | 300 | 0.0003 | - |
|
169 |
+
| 4.2169 | 350 | 0.0001 | - |
|
170 |
+
| 4.8193 | 400 | 0.0001 | - |
|
171 |
+
| 5.4217 | 450 | 0.0 | - |
|
172 |
+
| 6.0241 | 500 | 0.0 | - |
|
173 |
+
| 6.6265 | 550 | 0.0 | - |
|
174 |
+
| 7.2289 | 600 | 0.0 | - |
|
175 |
+
| 7.8313 | 650 | 0.0 | - |
|
176 |
+
| 8.4337 | 700 | 0.0 | - |
|
177 |
+
| 9.0361 | 750 | 0.0 | - |
|
178 |
+
| 9.6386 | 800 | 0.0 | - |
|
179 |
+
| 10.2410 | 850 | 0.0 | - |
|
180 |
+
| 10.8434 | 900 | 0.0 | - |
|
181 |
+
| 11.4458 | 950 | 0.0 | - |
|
182 |
+
| 12.0482 | 1000 | 0.0 | - |
|
183 |
+
| 12.6506 | 1050 | 0.0001 | - |
|
184 |
+
| 13.2530 | 1100 | 0.0 | - |
|
185 |
+
| 13.8554 | 1150 | 0.0 | - |
|
186 |
+
| 14.4578 | 1200 | 0.0 | - |
|
187 |
+
| 15.0602 | 1250 | 0.0 | - |
|
188 |
+
| 15.6627 | 1300 | 0.0 | - |
|
189 |
+
| 16.2651 | 1350 | 0.0 | - |
|
190 |
+
| 16.8675 | 1400 | 0.0 | - |
|
191 |
+
| 17.4699 | 1450 | 0.0 | - |
|
192 |
+
| 18.0723 | 1500 | 0.0 | - |
|
193 |
+
| 18.6747 | 1550 | 0.0 | - |
|
194 |
+
| 19.2771 | 1600 | 0.0 | - |
|
195 |
+
| 19.8795 | 1650 | 0.0 | - |
|
196 |
+
| 20.4819 | 1700 | 0.0 | - |
|
197 |
+
| 21.0843 | 1750 | 0.0 | - |
|
198 |
+
| 21.6867 | 1800 | 0.0 | - |
|
199 |
+
| 22.2892 | 1850 | 0.0 | - |
|
200 |
+
| 22.8916 | 1900 | 0.0 | - |
|
201 |
+
| 23.4940 | 1950 | 0.0 | - |
|
202 |
+
| 24.0964 | 2000 | 0.0 | - |
|
203 |
+
| 24.6988 | 2050 | 0.0 | - |
|
204 |
+
| 25.3012 | 2100 | 0.0 | - |
|
205 |
+
| 25.9036 | 2150 | 0.0 | - |
|
206 |
+
| 26.5060 | 2200 | 0.0 | - |
|
207 |
+
| 27.1084 | 2250 | 0.0 | - |
|
208 |
+
| 27.7108 | 2300 | 0.0 | - |
|
209 |
+
| 28.3133 | 2350 | 0.0 | - |
|
210 |
+
| 28.9157 | 2400 | 0.0 | - |
|
211 |
+
| 29.5181 | 2450 | 0.0 | - |
|
212 |
+
|
213 |
+
### Framework Versions
|
214 |
+
- Python: 3.10.12
|
215 |
+
- SetFit: 1.1.0
|
216 |
+
- Sentence Transformers: 3.3.1
|
217 |
+
- Transformers: 4.44.2
|
218 |
+
- PyTorch: 2.2.0a0+81ea7a4
|
219 |
+
- Datasets: 3.2.0
|
220 |
+
- Tokenizers: 0.19.1
|
221 |
+
|
222 |
+
## Citation
|
223 |
+
|
224 |
+
### BibTeX
|
225 |
+
```bibtex
|
226 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
227 |
+
doi = {10.48550/ARXIV.2209.11055},
|
228 |
+
url = {https://arxiv.org/abs/2209.11055},
|
229 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
230 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
231 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
232 |
+
publisher = {arXiv},
|
233 |
+
year = {2022},
|
234 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
235 |
+
}
|
236 |
+
```
|
237 |
+
|
238 |
+
<!--
|
239 |
+
## Glossary
|
240 |
+
|
241 |
+
*Clearly define terms in order to be accessible across audiences.*
|
242 |
+
-->
|
243 |
+
|
244 |
+
<!--
|
245 |
+
## Model Card Authors
|
246 |
+
|
247 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
248 |
+
-->
|
249 |
+
|
250 |
+
<!--
|
251 |
+
## Model Card Contact
|
252 |
+
|
253 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
254 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "mini1013/master_item_sl_org_gtcate",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"gradient_checkpointing": false,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"layer_norm_eps": 1e-05,
|
17 |
+
"max_position_embeddings": 514,
|
18 |
+
"model_type": "roberta",
|
19 |
+
"num_attention_heads": 12,
|
20 |
+
"num_hidden_layers": 12,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"tokenizer_class": "BertTokenizer",
|
24 |
+
"torch_dtype": "float32",
|
25 |
+
"transformers_version": "4.44.2",
|
26 |
+
"type_vocab_size": 1,
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 32000
|
29 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.44.2",
|
5 |
+
"pytorch": "2.2.0a0+81ea7a4"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"labels": null,
|
3 |
+
"normalize_embeddings": false
|
4 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6236be1b1365d65c9c79afd70475bfc8b0ff5d12726b0c122728a042edd318e9
|
3 |
+
size 442494816
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:101bac1af9e787ee04a5838563be97a68fc403cb499b99589a3b077d5f2fd9d5
|
3 |
+
size 37767
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "[CLS]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "[SEP]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "[MASK]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "[PAD]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "[SEP]",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[CLS]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[PAD]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[SEP]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[UNK]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "[CLS]",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"cls_token": "[CLS]",
|
47 |
+
"do_basic_tokenize": true,
|
48 |
+
"do_lower_case": false,
|
49 |
+
"eos_token": "[SEP]",
|
50 |
+
"mask_token": "[MASK]",
|
51 |
+
"max_length": 512,
|
52 |
+
"model_max_length": 512,
|
53 |
+
"never_split": null,
|
54 |
+
"pad_to_multiple_of": null,
|
55 |
+
"pad_token": "[PAD]",
|
56 |
+
"pad_token_type_id": 0,
|
57 |
+
"padding_side": "right",
|
58 |
+
"sep_token": "[SEP]",
|
59 |
+
"stride": 0,
|
60 |
+
"strip_accents": null,
|
61 |
+
"tokenize_chinese_chars": true,
|
62 |
+
"tokenizer_class": "BertTokenizer",
|
63 |
+
"truncation_side": "right",
|
64 |
+
"truncation_strategy": "longest_first",
|
65 |
+
"unk_token": "[UNK]"
|
66 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|