mini1013 commited on
Commit
4fa50a7
·
verified ·
1 Parent(s): 5b9ccdc

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,275 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - setfit
4
+ - sentence-transformers
5
+ - text-classification
6
+ - generated_from_setfit_trainer
7
+ widget:
8
+ - text: 가퍼 스포츠 낚시 벨트 어깨 하 해상 스탠드업 물고기 싸움 로드 홀더 스포츠/레저>낚시>낚시의류/잡화>힙커버/힙가드
9
+ - text: 낚시 태클박스 36리터 세트8 초경량 멀티 테이블 의자 받침대 루어 민물 바다 케리어 BSS158-3 스포츠/레저>낚시>낚시용품>태클박스
10
+ - text: 메이저 크래프트 자이언트 킬링 Major Craft GK5SJ-B663 스포츠/레저>낚시>루어낚시>루어낚시세트
11
+ - text: 갸프 낚싯대 용골 핸들 땀 흡수 스트랩 미끄럼 방지 절연 라켓 손잡이 커버 스포츠/레저>낚시>낚시용품>가프
12
+ - text: 송어베이스 루어 세트 스푼 미끼 스피너 보빈 인공 스포츠/레저>낚시>루어낚시>루어낚시세트
13
+ metrics:
14
+ - accuracy
15
+ pipeline_tag: text-classification
16
+ library_name: setfit
17
+ inference: true
18
+ base_model: mini1013/master_domain
19
+ model-index:
20
+ - name: SetFit with mini1013/master_domain
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: accuracy
31
+ value: 1.0
32
+ name: Accuracy
33
+ ---
34
+
35
+ # SetFit with mini1013/master_domain
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Number of Classes:** 8 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | 7.0 | <ul><li>'다이와 DAIWA 한국다이와정공 소품케이스 클리어 파우치 S C 스포츠/레저>낚시>바다낚시>찌케이스'</li><li>'갓포스 고급 루어 낚시가방 루어대 원투대 하드 로드케이스 낚시대수납 단품 112CM-157CM 스포츠/레저>낚시>바다낚시>바다낚시가방'</li><li>'다이와 포터블 휴대용 로드케이스 B 140R 스포츠/레저>낚시>바다낚시>바다낚시가방'</li></ul> |
66
+ | 3.0 | <ul><li>'이공조구 원 포인트 바다루어낚싯대 S180 스포츠/레저>낚시>낚싯대>바다루어낚싯대'</li><li>'엔에스 블랙 매직아이 슬로우피치 바다루어낚싯대 B-592H3MF 스포츠/레저>낚시>낚싯대>바다루어낚싯대'</li><li>'은성 실스타 DHC 명파S 민물낚싯대 30칸 스포츠/레저>낚시>낚싯대>민물낚싯대'</li></ul> |
67
+ | 1.0 | <ul><li>'메이호 태클박스 루어케이스 도구통 지그통 VS-388DD 스포츠/레저>낚시>낚시용품>태클박스'</li><li>'다이와 쿨라인 알파 3 펄 TS2000 스포츠/레저>낚시>낚시용품>쿨백'</li><li>'슬라이드 낚시 쪽가위 라인커터기 합사가위 T74464474 스포츠/레저>낚시>낚시공구>가위/라인커터/핀온릴'</li></ul> |
68
+ | 5.0 | <ul><li>'다미끼 맘바2 러버지그-배스 루어 민물루어 1 2oz 스포츠/레저>낚시>루어낚시>하드베이트'</li><li>'루어 낚시 가물치 배스 5pcs 개구리 세트 프로그 스포츠/레저>낚시>루어낚시>루어낚시세트'</li><li>'KFP 미노우 KS01 하드베이트 싱킹타입 루어 포퍼 웜 크랭크 프로팅 싱킹 배스 미끼 농어 베이트 스포츠/레저>낚시>루어낚시>하드베이트'</li></ul> |
69
+ | 0.0 | <ul><li>'다이와 레브로스 스피닝릴 LT2500D-XH 스포츠/레저>낚시>낚시릴>스피닝릴'</li><li>'바낙스 LJ100x 장구통릴 티탄 스포츠/레저>낚시>낚시릴>베이트릴'</li><li>'시마노 FX 1000 스피닝릴 스포츠/레저>낚시>낚시릴>스피닝릴'</li></ul> |
70
+ | 4.0 | <ul><li>'가마라 쇼크리더 카본 목줄 50m 6호 GFLUORO506 스포츠/레저>낚시>낚싯줄>카본라인'</li><li>'선라인 토네이도 마츠다 스페셜 블랙 스트림 낚싯줄 70m 1.75호 스포츠/레저>낚시>낚싯줄>카본라인'</li><li>'선라인 슈터 FC 스나이퍼 100m 4.5LB 스포츠/레저>낚시>낚싯줄>카본라인'</li></ul> |
71
+ | 2.0 | <ul><li>'다이와 낚시화 부츠 운동화 스파이크 슈즈 DAIWA 일본직구 DS-2150CD 스포츠/레저>낚시>낚시의류/잡화>낚시신발'</li><li>'HDF 해동 피나투라 올컷 방한 덮개장갑 낚시장갑 스포츠/레저>낚시>낚시의류/잡화>낚시장갑'</li><li>'가마가츠 낚시 코듀라 힙가드 로우백 타입 단일사이즈 GM3727 스포츠/레저>낚시>낚시의류/잡화>힙커버/힙가드'</li></ul> |
72
+ | 6.0 | <ul><li>'루웍스 빙어 초릿대 23cm 스포츠/레저>낚시>민물낚시>얼음낚시'</li><li>'바다 민물 고기 낚시대 보관 수납 가방 하드케이스 스포츠/레저>낚시>민물낚시>민물낚시가방'</li><li>'고급 내림찌케이스 대형찌보관함 플로팅 보관박스 스포츠/레저>낚시>민물낚시>찌케이스'</li></ul> |
73
+
74
+ ## Evaluation
75
+
76
+ ### Metrics
77
+ | Label | Accuracy |
78
+ |:--------|:---------|
79
+ | **all** | 1.0 |
80
+
81
+ ## Uses
82
+
83
+ ### Direct Use for Inference
84
+
85
+ First install the SetFit library:
86
+
87
+ ```bash
88
+ pip install setfit
89
+ ```
90
+
91
+ Then you can load this model and run inference.
92
+
93
+ ```python
94
+ from setfit import SetFitModel
95
+
96
+ # Download from the 🤗 Hub
97
+ model = SetFitModel.from_pretrained("mini1013/master_cate_sl4")
98
+ # Run inference
99
+ preds = model("송어베이스 루어 세트 스푼 미끼 스피너 보빈 인공 스포츠/레저>낚시>루어낚시>루어낚시세트")
100
+ ```
101
+
102
+ <!--
103
+ ### Downstream Use
104
+
105
+ *List how someone could finetune this model on their own dataset.*
106
+ -->
107
+
108
+ <!--
109
+ ### Out-of-Scope Use
110
+
111
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
112
+ -->
113
+
114
+ <!--
115
+ ## Bias, Risks and Limitations
116
+
117
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
118
+ -->
119
+
120
+ <!--
121
+ ### Recommendations
122
+
123
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
124
+ -->
125
+
126
+ ## Training Details
127
+
128
+ ### Training Set Metrics
129
+ | Training set | Min | Median | Max |
130
+ |:-------------|:----|:-------|:----|
131
+ | Word count | 2 | 7.8018 | 19 |
132
+
133
+ | Label | Training Sample Count |
134
+ |:------|:----------------------|
135
+ | 0.0 | 70 |
136
+ | 1.0 | 70 |
137
+ | 2.0 | 70 |
138
+ | 3.0 | 70 |
139
+ | 4.0 | 70 |
140
+ | 5.0 | 70 |
141
+ | 6.0 | 70 |
142
+ | 7.0 | 70 |
143
+
144
+ ### Training Hyperparameters
145
+ - batch_size: (256, 256)
146
+ - num_epochs: (30, 30)
147
+ - max_steps: -1
148
+ - sampling_strategy: oversampling
149
+ - num_iterations: 50
150
+ - body_learning_rate: (2e-05, 1e-05)
151
+ - head_learning_rate: 0.01
152
+ - loss: CosineSimilarityLoss
153
+ - distance_metric: cosine_distance
154
+ - margin: 0.25
155
+ - end_to_end: False
156
+ - use_amp: False
157
+ - warmup_proportion: 0.1
158
+ - l2_weight: 0.01
159
+ - seed: 42
160
+ - eval_max_steps: -1
161
+ - load_best_model_at_end: False
162
+
163
+ ### Training Results
164
+ | Epoch | Step | Training Loss | Validation Loss |
165
+ |:-------:|:----:|:-------------:|:---------------:|
166
+ | 0.0091 | 1 | 0.4946 | - |
167
+ | 0.4545 | 50 | 0.5017 | - |
168
+ | 0.9091 | 100 | 0.2322 | - |
169
+ | 1.3636 | 150 | 0.0559 | - |
170
+ | 1.8182 | 200 | 0.0182 | - |
171
+ | 2.2727 | 250 | 0.0165 | - |
172
+ | 2.7273 | 300 | 0.0018 | - |
173
+ | 3.1818 | 350 | 0.0001 | - |
174
+ | 3.6364 | 400 | 0.0001 | - |
175
+ | 4.0909 | 450 | 0.0001 | - |
176
+ | 4.5455 | 500 | 0.0 | - |
177
+ | 5.0 | 550 | 0.0 | - |
178
+ | 5.4545 | 600 | 0.0 | - |
179
+ | 5.9091 | 650 | 0.0 | - |
180
+ | 6.3636 | 700 | 0.0 | - |
181
+ | 6.8182 | 750 | 0.0 | - |
182
+ | 7.2727 | 800 | 0.0 | - |
183
+ | 7.7273 | 850 | 0.0 | - |
184
+ | 8.1818 | 900 | 0.0 | - |
185
+ | 8.6364 | 950 | 0.0 | - |
186
+ | 9.0909 | 1000 | 0.0 | - |
187
+ | 9.5455 | 1050 | 0.0 | - |
188
+ | 10.0 | 1100 | 0.0 | - |
189
+ | 10.4545 | 1150 | 0.0 | - |
190
+ | 10.9091 | 1200 | 0.0 | - |
191
+ | 11.3636 | 1250 | 0.0 | - |
192
+ | 11.8182 | 1300 | 0.0 | - |
193
+ | 12.2727 | 1350 | 0.0 | - |
194
+ | 12.7273 | 1400 | 0.0 | - |
195
+ | 13.1818 | 1450 | 0.0 | - |
196
+ | 13.6364 | 1500 | 0.0 | - |
197
+ | 14.0909 | 1550 | 0.0 | - |
198
+ | 14.5455 | 1600 | 0.0 | - |
199
+ | 15.0 | 1650 | 0.0 | - |
200
+ | 15.4545 | 1700 | 0.0 | - |
201
+ | 15.9091 | 1750 | 0.0 | - |
202
+ | 16.3636 | 1800 | 0.0 | - |
203
+ | 16.8182 | 1850 | 0.0 | - |
204
+ | 17.2727 | 1900 | 0.0 | - |
205
+ | 17.7273 | 1950 | 0.0 | - |
206
+ | 18.1818 | 2000 | 0.0 | - |
207
+ | 18.6364 | 2050 | 0.0 | - |
208
+ | 19.0909 | 2100 | 0.0 | - |
209
+ | 19.5455 | 2150 | 0.0 | - |
210
+ | 20.0 | 2200 | 0.0 | - |
211
+ | 20.4545 | 2250 | 0.0 | - |
212
+ | 20.9091 | 2300 | 0.0 | - |
213
+ | 21.3636 | 2350 | 0.0 | - |
214
+ | 21.8182 | 2400 | 0.0 | - |
215
+ | 22.2727 | 2450 | 0.0 | - |
216
+ | 22.7273 | 2500 | 0.0 | - |
217
+ | 23.1818 | 2550 | 0.0 | - |
218
+ | 23.6364 | 2600 | 0.0 | - |
219
+ | 24.0909 | 2650 | 0.0 | - |
220
+ | 24.5455 | 2700 | 0.0 | - |
221
+ | 25.0 | 2750 | 0.0 | - |
222
+ | 25.4545 | 2800 | 0.0 | - |
223
+ | 25.9091 | 2850 | 0.0 | - |
224
+ | 26.3636 | 2900 | 0.0 | - |
225
+ | 26.8182 | 2950 | 0.0 | - |
226
+ | 27.2727 | 3000 | 0.0 | - |
227
+ | 27.7273 | 3050 | 0.0 | - |
228
+ | 28.1818 | 3100 | 0.0 | - |
229
+ | 28.6364 | 3150 | 0.0 | - |
230
+ | 29.0909 | 3200 | 0.0 | - |
231
+ | 29.5455 | 3250 | 0.0 | - |
232
+ | 30.0 | 3300 | 0.0 | - |
233
+
234
+ ### Framework Versions
235
+ - Python: 3.10.12
236
+ - SetFit: 1.1.0
237
+ - Sentence Transformers: 3.3.1
238
+ - Transformers: 4.44.2
239
+ - PyTorch: 2.2.0a0+81ea7a4
240
+ - Datasets: 3.2.0
241
+ - Tokenizers: 0.19.1
242
+
243
+ ## Citation
244
+
245
+ ### BibTeX
246
+ ```bibtex
247
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
248
+ doi = {10.48550/ARXIV.2209.11055},
249
+ url = {https://arxiv.org/abs/2209.11055},
250
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
251
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
252
+ title = {Efficient Few-Shot Learning Without Prompts},
253
+ publisher = {arXiv},
254
+ year = {2022},
255
+ copyright = {Creative Commons Attribution 4.0 International}
256
+ }
257
+ ```
258
+
259
+ <!--
260
+ ## Glossary
261
+
262
+ *Clearly define terms in order to be accessible across audiences.*
263
+ -->
264
+
265
+ <!--
266
+ ## Model Card Authors
267
+
268
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
269
+ -->
270
+
271
+ <!--
272
+ ## Model Card Contact
273
+
274
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
275
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_sl_org_gtcate",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.44.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.2.0a0+81ea7a4"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aca004ec4035f3ebef7b27f3b7e608bf6748663950a6dde2f7f72470d5ab09d3
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e1feeed895635061800cb1d3350227f795f0abf7efce15bd83a5d0ffc1acc530
3
+ size 50087
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff