File size: 11,329 Bytes
cb2a352 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
---
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 스프링 구조 고급형 농구링 농구골망 간편한운동 스포츠/레저>농구>농구대
- text: 판 점수 배구 농구 전자 스포츠/레저>농구>기타농구용품
- text: 낫소 농구공 믹스 매치 BMM 장기간 공기 보존 스포츠/레저>농구>농구공
- text: 스타스포츠 농구 트레이닝 포지션 마커 세트 OFKNN1O2 스포츠/레저>농구>농구대
- text: 소닉블라스트폭스40 휘슬와치 손목스톱워치세트폭스40 6906-0700 스포츠/레저>농구>기타농구용품
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: mini1013/master_domain
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 1.0
name: Accuracy
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 6 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.0 | <ul><li>'NYS 365 긴팔 티셔츠 빅로고 농구유니폼 농구의류 슈팅셔츠 롱슬리브 상의 스포츠/레저>농구>농구의류'</li><li>'나이키 남성 맥스90 농구 티셔츠 FV8395-345 스포츠/레저>농구>농구의류'</li><li>'농구져지 나시 농구 반티 메쉬 시카고불스 농구복 유니폼 민소매 헬스 짐웨어 트레이닝 티셔츠 스포츠/레저>농구>농구의류'</li></ul> |
| 0.0 | <ul><li>'타요 이지훅 농구대 세트 스포츠/레저>농구>기타농구용품'</li><li>'먼지제거 더스터 슈 체육관신발 몰텐 농구장 보드판 AW5EA0E1 스포츠/레저>농구>기타농구용품'</li><li>'Kuangmi 카우아미 농구 6호 7호 스트리트볼 KMbb18 흰색 6호 스포츠/레저>농구>기타농구용품'</li></ul> |
| 3.0 | <ul><li>'접이식 농구 게임 슈팅 골대 슛팅 연습 게임기 스포츠 스포츠/레저>농구>농구대'</li><li>'농구대 벽걸이 야외 연습 백보드 농구골대 체육관 스포츠/레저>농구>농구대'</li><li>'농구네트 이동식 거치대 트레이닝 패스 연습 기구 스포츠/레저>농구>농구대'</li></ul> |
| 2.0 | <ul><li>'농구 축구 풋살 공3개입 3볼백 스타 볼가방 중등부 스포츠/레저>농구>농구공가방'</li><li>'엄브로 백팩 이지 18L 에어팟 파우치 구성 풋살 블루 UP123CBP11 114856 스포츠/레저>농구>농구공가방'</li><li>'미카사 공가방 3개입 AC-BG230W 스포츠/레저>농구>농구공가방'</li></ul> |
| 1.0 | <ul><li>'NBA NCAA 윌슨 농구공 한정판 DRV ENDURE PU 7호 스포츠/레저>농구>농구공'</li><li>'클래식 점보 농구공 스포츠/레저>농구>농구공'</li><li>'몰텐 농구공 7호 KBL 공인구 BG4000 스포츠/레저>농구>농구공'</li></ul> |
| 5.0 | <ul><li>'조던 레거시 312 로우 파이어 Jordan Legacy Low Fire 547656 스포츠/레저>농구>농구화'</li><li>'JORDAN 조던 11 레트로 로우 시멘트 조단 11 Retro Low Cement 스포츠/레저>농구>농구화'</li><li>'아식스 젤 후프 V15 스탠다드 농구화 1063A063 100 스포츠/레저>농구>농구화'</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 1.0 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_sl5")
# Run inference
preds = model("판 점수 배구 농구 전자 스포츠/레저>농구>기타농구용품")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 3 | 9.1981 | 23 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0.0 | 70 |
| 1.0 | 70 |
| 2.0 | 70 |
| 3.0 | 70 |
| 4.0 | 70 |
| 5.0 | 69 |
### Training Hyperparameters
- batch_size: (256, 256)
- num_epochs: (30, 30)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 50
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0122 | 1 | 0.5273 | - |
| 0.6098 | 50 | 0.4932 | - |
| 1.2195 | 100 | 0.2677 | - |
| 1.8293 | 150 | 0.0673 | - |
| 2.4390 | 200 | 0.0159 | - |
| 3.0488 | 250 | 0.0002 | - |
| 3.6585 | 300 | 0.0001 | - |
| 4.2683 | 350 | 0.0001 | - |
| 4.8780 | 400 | 0.0 | - |
| 5.4878 | 450 | 0.0 | - |
| 6.0976 | 500 | 0.0 | - |
| 6.7073 | 550 | 0.0 | - |
| 7.3171 | 600 | 0.0 | - |
| 7.9268 | 650 | 0.0 | - |
| 8.5366 | 700 | 0.0 | - |
| 9.1463 | 750 | 0.0 | - |
| 9.7561 | 800 | 0.0 | - |
| 10.3659 | 850 | 0.0 | - |
| 10.9756 | 900 | 0.0001 | - |
| 11.5854 | 950 | 0.0 | - |
| 12.1951 | 1000 | 0.0 | - |
| 12.8049 | 1050 | 0.0 | - |
| 13.4146 | 1100 | 0.0 | - |
| 14.0244 | 1150 | 0.0 | - |
| 14.6341 | 1200 | 0.0 | - |
| 15.2439 | 1250 | 0.0 | - |
| 15.8537 | 1300 | 0.0001 | - |
| 16.4634 | 1350 | 0.0 | - |
| 17.0732 | 1400 | 0.0 | - |
| 17.6829 | 1450 | 0.0 | - |
| 18.2927 | 1500 | 0.0 | - |
| 18.9024 | 1550 | 0.0 | - |
| 19.5122 | 1600 | 0.0 | - |
| 20.1220 | 1650 | 0.0 | - |
| 20.7317 | 1700 | 0.0 | - |
| 21.3415 | 1750 | 0.0 | - |
| 21.9512 | 1800 | 0.0 | - |
| 22.5610 | 1850 | 0.0 | - |
| 23.1707 | 1900 | 0.0 | - |
| 23.7805 | 1950 | 0.0 | - |
| 24.3902 | 2000 | 0.0 | - |
| 25.0 | 2050 | 0.0 | - |
| 25.6098 | 2100 | 0.0 | - |
| 26.2195 | 2150 | 0.0 | - |
| 26.8293 | 2200 | 0.0 | - |
| 27.4390 | 2250 | 0.0 | - |
| 28.0488 | 2300 | 0.0 | - |
| 28.6585 | 2350 | 0.0 | - |
| 29.2683 | 2400 | 0.0 | - |
| 29.8780 | 2450 | 0.0 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |