mini1013 commited on
Commit
0ad8039
·
verified ·
1 Parent(s): 86ac8d8

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: klue/roberta-base
3
+ library_name: setfit
4
+ metrics:
5
+ - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: 밀크바오밥 오리지널 샴푸 베이비파우더 1L 09_트리트먼트 화이트머스크 1000ml (#M)화장품/미용>헤어케어>샴푸 AD > Naverstore
14
+ > 화장품/미용 > 헤어케어 > 샴푸 > 약산성샴푸
15
+ - text: 무코타염색제 7박스+3박스+정품 트리트먼트 50g 1.카키브라운 (#M)바디/헤어>바디케어>바디케어세트 Gmarket > 뷰티 > 바디/헤어
16
+ > 바디케어 > 바디케어세트
17
+ - text: 1+1세트~(컨센+릴렉스마스크100ml) 에스테티카 데미지 케어 컨센트레이트 120ml (열활성 열보호 에센스) 정품 + 릴렉스마스크100ml
18
+ 1개 (#M)쿠팡 홈>싱글라이프>샤워/세안>헤어에센스 Coupang > 뷰티 > 헤어 > 헤어에센스/오일 > 헤어에센스
19
+ - text: 헤드스파7 트리트먼트 더 프리미엄 210ml + 210ml MinSellAmount (#M)바디/헤어>헤어케어>헤어트리트먼트 Gmarket
20
+ > 뷰티 > 바디/헤어 > 헤어케어 > 헤어트리트먼트
21
+ - text: 헤어플러스 실크 코팅 트리트먼트 50ml 4개 실크 코팅 트리트먼트 50ml 4개 위메프 > 생활·주방·반려동물 > 바디/헤어 > 샴푸/린스/헤어케어
22
+ > 트리트먼트;위메프 > 생활·주방·반려동물 > 바디/헤어 > 샴푸/린스/헤어케어;위메프 > 뷰티 > 바디/헤어 > 샴푸/린스/헤어케어 >
23
+ 샴푸/린스;(#M)위메프 > 생활·주방용품 > 바디/헤어 > 샴푸/린스/헤어케어 > 트리트먼트 위메프 > 뷰티 > 바디/헤어 > 샴푸/린스/헤어케어
24
+ > 트리트먼트
25
+ inference: true
26
+ model-index:
27
+ - name: SetFit with klue/roberta-base
28
+ results:
29
+ - task:
30
+ type: text-classification
31
+ name: Text Classification
32
+ dataset:
33
+ name: Unknown
34
+ type: unknown
35
+ split: test
36
+ metrics:
37
+ - type: accuracy
38
+ value: 0.8206115779645191
39
+ name: Accuracy
40
+ ---
41
+
42
+ # SetFit with klue/roberta-base
43
+
44
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [klue/roberta-base](https://huggingface.co/klue/roberta-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
45
+
46
+ The model has been trained using an efficient few-shot learning technique that involves:
47
+
48
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
49
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
50
+
51
+ ## Model Details
52
+
53
+ ### Model Description
54
+ - **Model Type:** SetFit
55
+ - **Sentence Transformer body:** [klue/roberta-base](https://huggingface.co/klue/roberta-base)
56
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
57
+ - **Maximum Sequence Length:** 512 tokens
58
+ - **Number of Classes:** 2 classes
59
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
60
+ <!-- - **Language:** Unknown -->
61
+ <!-- - **License:** Unknown -->
62
+
63
+ ### Model Sources
64
+
65
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
66
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
67
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
68
+
69
+ ### Model Labels
70
+ | Label | Examples |
71
+ |:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
72
+ | 1 | <ul><li>'로레알파리 토탈리페어5 트리트먼트 헤어팩 170ml × 1개 LotteOn > 뷰티 > 헤어/바디 > 헤어케어 > 트리트먼트/헤어팩 LotteOn > 뷰티 > 헤어/바디 > 헤어케어 > 트리트먼트/헤어팩'</li><li>'아모스 녹차실감 인텐시브 팩 250ml 녹차실감 인텐시브팩250g 홈>전체상품;(#M)홈>녹차실감 Naverstore > 화장품/미용 > 헤어케어 > 헤어팩'</li><li>'프리미엄 헤어클리닉 헤어팩 258ml 베이���파우더 LotteOn > 뷰티 > 헤어케어 > 헤어팩 LotteOn > 뷰티 > 헤어/바디 > 헤어케어 > 트리트먼트/헤어팩'</li></ul> |
73
+ | 0 | <ul><li>'퓨어시카 트리트먼트 베이비파우더향 1000ml 1개 MinSellAmount 스마일배송 홈>뷰티>바디케어>바디워시;스마일배송 홈>;(#M)스마일배송 홈>뷰티>헤어케어/스타일링>트리트먼트/팩 Gmarket > 뷰티 > 바디/헤어 > 바디케어 > 바디클렌저'</li><li>'1+1 살림백서 탈모 샴푸 엑티브B7 맥주효모 앤 비오틴 1000ml 남자 여자 바이오틴 4)오푼티아 트리트먼트 유칼립투스 1L (#M)화장품/미용>헤어케어>탈모케어 AD > Naverstore > 화장품/미용 > 가을뷰티 > 각질관리템 > 탈모샴푸'</li><li>'1+1 살림백서 오푼티아 퍼퓸 샴푸 500ml 약산성 비듬 지성 두피 볼륨 유칼립투스향 13.유칼립투스 트리트먼트 1+1 500ml (#M)화장품/미용>헤어케어>샴푸 AD > Naverstore > 화장품/미용 > 머스크 > 샴푸'</li></ul> |
74
+
75
+ ## Evaluation
76
+
77
+ ### Metrics
78
+ | Label | Accuracy |
79
+ |:--------|:---------|
80
+ | **all** | 0.8206 |
81
+
82
+ ## Uses
83
+
84
+ ### Direct Use for Inference
85
+
86
+ First install the SetFit library:
87
+
88
+ ```bash
89
+ pip install setfit
90
+ ```
91
+
92
+ Then you can load this model and run inference.
93
+
94
+ ```python
95
+ from setfit import SetFitModel
96
+
97
+ # Download from the 🤗 Hub
98
+ model = SetFitModel.from_pretrained("mini1013/master_cate_top_bt13_9")
99
+ # Run inference
100
+ preds = model("무코타염색제 7박스+3박스+정품 트리트먼트 50g 1.카키브라운 (#M)바디/헤어>바디케어>바디케어세트 Gmarket > 뷰티 > 바디/헤어 > 바디케어 > 바디케어세트")
101
+ ```
102
+
103
+ <!--
104
+ ### Downstream Use
105
+
106
+ *List how someone could finetune this model on their own dataset.*
107
+ -->
108
+
109
+ <!--
110
+ ### Out-of-Scope Use
111
+
112
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
113
+ -->
114
+
115
+ <!--
116
+ ## Bias, Risks and Limitations
117
+
118
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
119
+ -->
120
+
121
+ <!--
122
+ ### Recommendations
123
+
124
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
125
+ -->
126
+
127
+ ## Training Details
128
+
129
+ ### Training Set Metrics
130
+ | Training set | Min | Median | Max |
131
+ |:-------------|:----|:-------|:----|
132
+ | Word count | 14 | 23.76 | 98 |
133
+
134
+ | Label | Training Sample Count |
135
+ |:------|:----------------------|
136
+ | 0 | 50 |
137
+ | 1 | 50 |
138
+
139
+ ### Training Hyperparameters
140
+ - batch_size: (64, 64)
141
+ - num_epochs: (30, 30)
142
+ - max_steps: -1
143
+ - sampling_strategy: oversampling
144
+ - num_iterations: 100
145
+ - body_learning_rate: (2e-05, 1e-05)
146
+ - head_learning_rate: 0.01
147
+ - loss: CosineSimilarityLoss
148
+ - distance_metric: cosine_distance
149
+ - margin: 0.25
150
+ - end_to_end: False
151
+ - use_amp: False
152
+ - warmup_proportion: 0.1
153
+ - l2_weight: 0.01
154
+ - seed: 42
155
+ - eval_max_steps: -1
156
+ - load_best_model_at_end: False
157
+
158
+ ### Training Results
159
+ | Epoch | Step | Training Loss | Validation Loss |
160
+ |:-------:|:----:|:-------------:|:---------------:|
161
+ | 0.0064 | 1 | 0.4326 | - |
162
+ | 0.3185 | 50 | 0.3579 | - |
163
+ | 0.6369 | 100 | 0.2616 | - |
164
+ | 0.9554 | 150 | 0.0326 | - |
165
+ | 1.2739 | 200 | 0.0 | - |
166
+ | 1.5924 | 250 | 0.0 | - |
167
+ | 1.9108 | 300 | 0.0 | - |
168
+ | 2.2293 | 350 | 0.0 | - |
169
+ | 2.5478 | 400 | 0.0 | - |
170
+ | 2.8662 | 450 | 0.0 | - |
171
+ | 3.1847 | 500 | 0.0 | - |
172
+ | 3.5032 | 550 | 0.0 | - |
173
+ | 3.8217 | 600 | 0.0 | - |
174
+ | 4.1401 | 650 | 0.0 | - |
175
+ | 4.4586 | 700 | 0.0 | - |
176
+ | 4.7771 | 750 | 0.0 | - |
177
+ | 5.0955 | 800 | 0.0 | - |
178
+ | 5.4140 | 850 | 0.0 | - |
179
+ | 5.7325 | 900 | 0.0 | - |
180
+ | 6.0510 | 950 | 0.0 | - |
181
+ | 6.3694 | 1000 | 0.0 | - |
182
+ | 6.6879 | 1050 | 0.0 | - |
183
+ | 7.0064 | 1100 | 0.0 | - |
184
+ | 7.3248 | 1150 | 0.0 | - |
185
+ | 7.6433 | 1200 | 0.0 | - |
186
+ | 7.9618 | 1250 | 0.0 | - |
187
+ | 8.2803 | 1300 | 0.0 | - |
188
+ | 8.5987 | 1350 | 0.0 | - |
189
+ | 8.9172 | 1400 | 0.0 | - |
190
+ | 9.2357 | 1450 | 0.0 | - |
191
+ | 9.5541 | 1500 | 0.0 | - |
192
+ | 9.8726 | 1550 | 0.0 | - |
193
+ | 10.1911 | 1600 | 0.0 | - |
194
+ | 10.5096 | 1650 | 0.0 | - |
195
+ | 10.8280 | 1700 | 0.0 | - |
196
+ | 11.1465 | 1750 | 0.0 | - |
197
+ | 11.4650 | 1800 | 0.0 | - |
198
+ | 11.7834 | 1850 | 0.0 | - |
199
+ | 12.1019 | 1900 | 0.0 | - |
200
+ | 12.4204 | 1950 | 0.0 | - |
201
+ | 12.7389 | 2000 | 0.0 | - |
202
+ | 13.0573 | 2050 | 0.0 | - |
203
+ | 13.3758 | 2100 | 0.0 | - |
204
+ | 13.6943 | 2150 | 0.0 | - |
205
+ | 14.0127 | 2200 | 0.0 | - |
206
+ | 14.3312 | 2250 | 0.0 | - |
207
+ | 14.6497 | 2300 | 0.0 | - |
208
+ | 14.9682 | 2350 | 0.0 | - |
209
+ | 15.2866 | 2400 | 0.0 | - |
210
+ | 15.6051 | 2450 | 0.0 | - |
211
+ | 15.9236 | 2500 | 0.0 | - |
212
+ | 16.2420 | 2550 | 0.0 | - |
213
+ | 16.5605 | 2600 | 0.0 | - |
214
+ | 16.8790 | 2650 | 0.0 | - |
215
+ | 17.1975 | 2700 | 0.0 | - |
216
+ | 17.5159 | 2750 | 0.0 | - |
217
+ | 17.8344 | 2800 | 0.0 | - |
218
+ | 18.1529 | 2850 | 0.0 | - |
219
+ | 18.4713 | 2900 | 0.0 | - |
220
+ | 18.7898 | 2950 | 0.0 | - |
221
+ | 19.1083 | 3000 | 0.0 | - |
222
+ | 19.4268 | 3050 | 0.0 | - |
223
+ | 19.7452 | 3100 | 0.0 | - |
224
+ | 20.0637 | 3150 | 0.0 | - |
225
+ | 20.3822 | 3200 | 0.0 | - |
226
+ | 20.7006 | 3250 | 0.0 | - |
227
+ | 21.0191 | 3300 | 0.0 | - |
228
+ | 21.3376 | 3350 | 0.0 | - |
229
+ | 21.6561 | 3400 | 0.0 | - |
230
+ | 21.9745 | 3450 | 0.0 | - |
231
+ | 22.2930 | 3500 | 0.0 | - |
232
+ | 22.6115 | 3550 | 0.0 | - |
233
+ | 22.9299 | 3600 | 0.0 | - |
234
+ | 23.2484 | 3650 | 0.0 | - |
235
+ | 23.5669 | 3700 | 0.0 | - |
236
+ | 23.8854 | 3750 | 0.0 | - |
237
+ | 24.2038 | 3800 | 0.0 | - |
238
+ | 24.5223 | 3850 | 0.0 | - |
239
+ | 24.8408 | 3900 | 0.0 | - |
240
+ | 25.1592 | 3950 | 0.0 | - |
241
+ | 25.4777 | 4000 | 0.0 | - |
242
+ | 25.7962 | 4050 | 0.0 | - |
243
+ | 26.1146 | 4100 | 0.0 | - |
244
+ | 26.4331 | 4150 | 0.0 | - |
245
+ | 26.7516 | 4200 | 0.0 | - |
246
+ | 27.0701 | 4250 | 0.0 | - |
247
+ | 27.3885 | 4300 | 0.0 | - |
248
+ | 27.7070 | 4350 | 0.0 | - |
249
+ | 28.0255 | 4400 | 0.0 | - |
250
+ | 28.3439 | 4450 | 0.0 | - |
251
+ | 28.6624 | 4500 | 0.0 | - |
252
+ | 28.9809 | 4550 | 0.0 | - |
253
+ | 29.2994 | 4600 | 0.0 | - |
254
+ | 29.6178 | 4650 | 0.0 | - |
255
+ | 29.9363 | 4700 | 0.0 | - |
256
+
257
+ ### Framework Versions
258
+ - Python: 3.10.12
259
+ - SetFit: 1.1.0
260
+ - Sentence Transformers: 3.3.1
261
+ - Transformers: 4.44.2
262
+ - PyTorch: 2.2.0a0+81ea7a4
263
+ - Datasets: 3.2.0
264
+ - Tokenizers: 0.19.1
265
+
266
+ ## Citation
267
+
268
+ ### BibTeX
269
+ ```bibtex
270
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
271
+ doi = {10.48550/ARXIV.2209.11055},
272
+ url = {https://arxiv.org/abs/2209.11055},
273
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
274
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
275
+ title = {Efficient Few-Shot Learning Without Prompts},
276
+ publisher = {arXiv},
277
+ year = {2022},
278
+ copyright = {Creative Commons Attribution 4.0 International}
279
+ }
280
+ ```
281
+
282
+ <!--
283
+ ## Glossary
284
+
285
+ *Clearly define terms in order to be accessible across audiences.*
286
+ -->
287
+
288
+ <!--
289
+ ## Model Card Authors
290
+
291
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
292
+ -->
293
+
294
+ <!--
295
+ ## Model Card Contact
296
+
297
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
298
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_domain",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.44.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.2.0a0+81ea7a4"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8fbd203f04adca19fe8923ca7a665f712e62e9cef47ef2dca37e99486b638a2b
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:970fd494d80bda8297715601419ebbbe267746e749d8b4dcd537a095e95bee64
3
+ size 7007
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff