File size: 19,852 Bytes
9e88ece
 
 
 
 
 
 
 
 
 
 
 
ac78b57
31d1c0f
 
ac78b57
31d1c0f
 
 
 
 
 
9e88ece
 
 
 
 
 
 
 
 
 
 
 
 
31d1c0f
9e88ece
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31d1c0f
 
 
 
 
 
 
9e88ece
 
 
 
 
 
31d1c0f
9e88ece
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31d1c0f
9e88ece
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31d1c0f
9e88ece
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31d1c0f
 
 
 
 
 
 
 
 
ac78b57
31d1c0f
ac78b57
31d1c0f
 
 
 
ac78b57
 
31d1c0f
ac78b57
9e88ece
31d1c0f
 
ac78b57
9e88ece
 
 
 
 
 
 
 
 
 
ac78b57
 
9e88ece
 
 
31d1c0f
 
 
 
 
 
 
9e88ece
 
ac78b57
31d1c0f
9e88ece
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31d1c0f
 
 
9e88ece
 
 
31d1c0f
9e88ece
31d1c0f
9e88ece
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31d1c0f
 
 
9e88ece
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 더툴랩 더스타일래쉬 4종리얼/내츄럴/볼륨/맥스  택1 004 맥스 LotteOn > 뷰티 > 뷰티기기/소품 > 아이/브로우소품 >
    브로우관리 LotteOn > 뷰티 > 뷰티기기/소품 > 아이/브로우소품 > 브로우관리
- text: 더툴랩 더스타일래쉬 4종(리얼/내츄럴/볼륨/맥스)  택1 001 리얼 LotteOn > 뷰티 > 뷰티기기/소품 > 아이/브로우소품
    > 속눈썹관리 LotteOn > 뷰티 > 뷰티기기/소품 > 아이/브로우소품 > 속눈썹관리
- text: 더툴랩 더스타일래쉬 4종(리얼/내츄럴/볼륨/맥스)  택1 001 리얼 LotteOn > 뷰티 > 뷰티기기/소품 > 아이/브로우소품
    > 브로우관리 LotteOn > 뷰티 > 뷰티기기/소품 > 아이/브로우소품 > 브로우관리
- text: 더툴랩 더스타일 래쉬 맥스(TSL004) × 2 LotteOn > 뷰티 > 뷰티기기/소품 > 아이/브로우소품 > 브로우관리 LotteOn
    > 뷰티 > 뷰티기기/소품 > 아이/브로우소품 > 브로우관리
- text: 더툴랩 스타일 래쉬 속눈썹 볼륨(TSL003) × 1 LotteOn > 뷰티 > 뷰티기기/소품 > 아이/브로우소품 > 속눈썹관리 LotteOn
    > 뷰티 > 뷰티기기/소품 > 아이/브로우소품 > 속눈썹관리
inference: true
model-index:
- name: SetFit with mini1013/master_domain
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.9812680115273775
      name: Accuracy
---

# SetFit with mini1013/master_domain

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 5 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                                                                                                                                                                                 |
|:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4     | <ul><li>'프레이속눈썹 가닥속눈썹 V_12mm (#M)홈>전체상품 Naverstore > 화장품/미용 > 뷰티소품 > 아이소품 > 속눈썹/속눈썹펌제'</li><li>'아리따움 아이돌 래쉬 프리미엄 타입 22호 러블리 아이(프리미엄) (#M)위메프 > 뷰티 > 이미용소품/기기 > 아이소품 > 인조속눈썹 위메프 > 뷰티 > 이미용소품/기기 > 아이소품 > 인조속눈썹'</li><li>'에뛰드하우스 마이뷰티툴 속눈썹 6종/인조속눈썹 6호 볼륨 업 (#M)11st>뷰티소품>메이크업소품>메이크업소품 11st > 뷰티 > 뷰티소품 > 메이크업소품'</li></ul>                                              |
| 1     | <ul><li>'트위저맨 - 스텐리스 스틸 브로우 셰이핑 가위 & 브러쉬 (스튜디오 컬렉션) 2pcs ssg > 뷰티 > 헤어/바디 > 헤어기기/소품 > 드라이기 ssg > 뷰티 > 헤어/바디 > 헤어기기/소품 > 드라이기'</li><li>'트위저맨 Studio Collection 브로우 쉐이핑 가위  브러쉬 NEW 정품  LotteOn > 뷰티 > 메이크업 > 메이크업세트 LotteOn > 뷰티 > 메이크업 > 메이크업세트'</li><li>'트위저맨 스테인리스 브로우 셰이핑 시져 브러쉬 70238 ssg > 뷰티 > 메이크업 > 베이스메이크업 > 파운데이션 ssg > 뷰티 > 메이크업 > 베이스메이크업 > 파운데이션'</li></ul> |
| 0     | <ul><li>'토니모리 쌍꺼풀액 속눈썹 접착제  홈>아리따움;(#M)홈>전체상품 Naverstore > 화장품/미용 > 뷰티소품 > 아이소품 > 속눈썹/속눈썹펌제'</li><li>'에뛰드 마이뷰티툴 쌍꺼풀 액&속눈썹 접착제 에뛰드 마이뷰티툴 쌍꺼풀 액&속눈썹 접착제 홈>미용소품>얼굴소품>쌍커풀;(#M)홈>미용소품>아이>속눈썹/쌍꺼풀 OLIVEYOUNG > 미용소품 > 아이 > 속눈썹/쌍꺼풀'</li><li>'트위저맨 폴딩 아이래쉬컴850676 30 66416850676 30 (#M)SSG.COM/메이크업/베이스메이크업/쿠션파운데이션 ssg > 뷰티 > 메이크업 > 베이스메이크업 > 쿠션파운데이션'</li></ul>             |
| 2     | <ul><li>'트위저맨 프로페셔널 아이래쉬 컬러 1개 (#M)SSG.COM/미용기기/소품/아이소품/뷰러 ssg > 뷰티 > 미용기기/소품 > 아이소품 > 뷰러'</li><li>'더툴랩 1039R 래쉬컬러 레귤러 (아찔한컬링)  (#M)홈>화장품/미용>뷰티소품>아이소품>뷰러 Naverstore > 화장품/미용 > 뷰티소품 > 아이소품 > 뷰러'</li><li>'슈에무라 아이래쉬 컬러 55721 LOREAL > Ssg > 슈에무라 > Branded > 슈에무라 ssg > 뷰티 > 메이크업 > 베이스메이크업'</li></ul>                                                                  |
| 3     | <ul><li>'e.l.f. 듀얼 펜슬 샤프너 혼합 색상 × 6개입 (#M)쿠팡 홈>뷰티>뷰티소품>아이소품>족집게/샤프너 Coupang > 뷰티 > 뷰티소품 > 아이소품 > 족집게/샤프너'</li><li>'e.l.f. 듀얼 펜슬 샤프너 2세트 (#M)쿠팡 홈>뷰티>뷰티소품>아이소품>족집게/샤프너 Coupang > 뷰티 > 뷰티소품 > 아이소품 > 족집게/샤프너'</li><li>'e.l.f. 듀얼 펜슬 샤프너 4세트 (#M)쿠팡 홈>뷰티>뷰티소품>아이소품>족집게/샤프너 Coupang > 뷰티 > 뷰티소품 > 아이소품 > 족집게/샤프너'</li></ul>                                                  |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 0.9813   |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_top_bt6_3_test_flat")
# Run inference
preds = model("더툴랩 더스타일 래쉬 맥스(TSL004) × 2개 LotteOn > 뷰티 > 뷰티기기/소품 > 아이/브로우소품 > 브로우관리 LotteOn > 뷰티 > 뷰티기기/소품 > 아이/브로우소품 > 브로우관리")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median  | Max |
|:-------------|:----|:--------|:----|
| Word count   | 13  | 19.2707 | 47  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0     | 50                    |
| 1     | 9                     |
| 2     | 50                    |
| 3     | 22                    |
| 4     | 50                    |

### Training Hyperparameters
- batch_size: (64, 64)
- num_epochs: (30, 30)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 100
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch   | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0035  | 1    | 0.4744        | -               |
| 0.1767  | 50   | 0.4176        | -               |
| 0.3534  | 100  | 0.3618        | -               |
| 0.5300  | 150  | 0.2985        | -               |
| 0.7067  | 200  | 0.2327        | -               |
| 0.8834  | 250  | 0.1017        | -               |
| 1.0601  | 300  | 0.0185        | -               |
| 1.2367  | 350  | 0.0037        | -               |
| 1.4134  | 400  | 0.0018        | -               |
| 1.5901  | 450  | 0.0009        | -               |
| 1.7668  | 500  | 0.0004        | -               |
| 1.9435  | 550  | 0.0005        | -               |
| 2.1201  | 600  | 0.0002        | -               |
| 2.2968  | 650  | 0.0002        | -               |
| 2.4735  | 700  | 0.0001        | -               |
| 2.6502  | 750  | 0.0001        | -               |
| 2.8269  | 800  | 0.0001        | -               |
| 3.0035  | 850  | 0.0001        | -               |
| 3.1802  | 900  | 0.0001        | -               |
| 3.3569  | 950  | 0.0           | -               |
| 3.5336  | 1000 | 0.0           | -               |
| 3.7102  | 1050 | 0.0001        | -               |
| 3.8869  | 1100 | 0.0001        | -               |
| 4.0636  | 1150 | 0.0           | -               |
| 4.2403  | 1200 | 0.0           | -               |
| 4.4170  | 1250 | 0.0           | -               |
| 4.5936  | 1300 | 0.0           | -               |
| 4.7703  | 1350 | 0.0           | -               |
| 4.9470  | 1400 | 0.0           | -               |
| 5.1237  | 1450 | 0.0           | -               |
| 5.3004  | 1500 | 0.0           | -               |
| 5.4770  | 1550 | 0.0           | -               |
| 5.6537  | 1600 | 0.0           | -               |
| 5.8304  | 1650 | 0.0           | -               |
| 6.0071  | 1700 | 0.0           | -               |
| 6.1837  | 1750 | 0.0           | -               |
| 6.3604  | 1800 | 0.0           | -               |
| 6.5371  | 1850 | 0.0           | -               |
| 6.7138  | 1900 | 0.0           | -               |
| 6.8905  | 1950 | 0.0           | -               |
| 7.0671  | 2000 | 0.0           | -               |
| 7.2438  | 2050 | 0.0           | -               |
| 7.4205  | 2100 | 0.0           | -               |
| 7.5972  | 2150 | 0.0023        | -               |
| 7.7739  | 2200 | 0.0029        | -               |
| 7.9505  | 2250 | 0.0001        | -               |
| 8.1272  | 2300 | 0.0           | -               |
| 8.3039  | 2350 | 0.0           | -               |
| 8.4806  | 2400 | 0.0           | -               |
| 8.6572  | 2450 | 0.0           | -               |
| 8.8339  | 2500 | 0.0           | -               |
| 9.0106  | 2550 | 0.0           | -               |
| 9.1873  | 2600 | 0.0           | -               |
| 9.3640  | 2650 | 0.0           | -               |
| 9.5406  | 2700 | 0.0           | -               |
| 9.7173  | 2750 | 0.0           | -               |
| 9.8940  | 2800 | 0.0           | -               |
| 10.0707 | 2850 | 0.0           | -               |
| 10.2473 | 2900 | 0.0           | -               |
| 10.4240 | 2950 | 0.0           | -               |
| 10.6007 | 3000 | 0.0           | -               |
| 10.7774 | 3050 | 0.0           | -               |
| 10.9541 | 3100 | 0.0           | -               |
| 11.1307 | 3150 | 0.0           | -               |
| 11.3074 | 3200 | 0.0           | -               |
| 11.4841 | 3250 | 0.0           | -               |
| 11.6608 | 3300 | 0.0           | -               |
| 11.8375 | 3350 | 0.0           | -               |
| 12.0141 | 3400 | 0.0           | -               |
| 12.1908 | 3450 | 0.0           | -               |
| 12.3675 | 3500 | 0.0           | -               |
| 12.5442 | 3550 | 0.0           | -               |
| 12.7208 | 3600 | 0.0           | -               |
| 12.8975 | 3650 | 0.0           | -               |
| 13.0742 | 3700 | 0.0           | -               |
| 13.2509 | 3750 | 0.0           | -               |
| 13.4276 | 3800 | 0.0           | -               |
| 13.6042 | 3850 | 0.0           | -               |
| 13.7809 | 3900 | 0.0           | -               |
| 13.9576 | 3950 | 0.0           | -               |
| 14.1343 | 4000 | 0.0           | -               |
| 14.3110 | 4050 | 0.0           | -               |
| 14.4876 | 4100 | 0.0           | -               |
| 14.6643 | 4150 | 0.0           | -               |
| 14.8410 | 4200 | 0.0           | -               |
| 15.0177 | 4250 | 0.0           | -               |
| 15.1943 | 4300 | 0.0           | -               |
| 15.3710 | 4350 | 0.0           | -               |
| 15.5477 | 4400 | 0.0           | -               |
| 15.7244 | 4450 | 0.0           | -               |
| 15.9011 | 4500 | 0.0005        | -               |
| 16.0777 | 4550 | 0.0008        | -               |
| 16.2544 | 4600 | 0.0001        | -               |
| 16.4311 | 4650 | 0.0           | -               |
| 16.6078 | 4700 | 0.0           | -               |
| 16.7845 | 4750 | 0.0           | -               |
| 16.9611 | 4800 | 0.0002        | -               |
| 17.1378 | 4850 | 0.0           | -               |
| 17.3145 | 4900 | 0.0003        | -               |
| 17.4912 | 4950 | 0.0           | -               |
| 17.6678 | 5000 | 0.0           | -               |
| 17.8445 | 5050 | 0.0           | -               |
| 18.0212 | 5100 | 0.0           | -               |
| 18.1979 | 5150 | 0.0           | -               |
| 18.3746 | 5200 | 0.0           | -               |
| 18.5512 | 5250 | 0.0           | -               |
| 18.7279 | 5300 | 0.0           | -               |
| 18.9046 | 5350 | 0.0           | -               |
| 19.0813 | 5400 | 0.0           | -               |
| 19.2580 | 5450 | 0.0           | -               |
| 19.4346 | 5500 | 0.0           | -               |
| 19.6113 | 5550 | 0.0           | -               |
| 19.7880 | 5600 | 0.0           | -               |
| 19.9647 | 5650 | 0.0           | -               |
| 20.1413 | 5700 | 0.0           | -               |
| 20.3180 | 5750 | 0.0           | -               |
| 20.4947 | 5800 | 0.0           | -               |
| 20.6714 | 5850 | 0.0           | -               |
| 20.8481 | 5900 | 0.0           | -               |
| 21.0247 | 5950 | 0.0           | -               |
| 21.2014 | 6000 | 0.0           | -               |
| 21.3781 | 6050 | 0.0           | -               |
| 21.5548 | 6100 | 0.0           | -               |
| 21.7314 | 6150 | 0.0           | -               |
| 21.9081 | 6200 | 0.0           | -               |
| 22.0848 | 6250 | 0.0           | -               |
| 22.2615 | 6300 | 0.0           | -               |
| 22.4382 | 6350 | 0.0           | -               |
| 22.6148 | 6400 | 0.0           | -               |
| 22.7915 | 6450 | 0.0           | -               |
| 22.9682 | 6500 | 0.0           | -               |
| 23.1449 | 6550 | 0.0           | -               |
| 23.3216 | 6600 | 0.0           | -               |
| 23.4982 | 6650 | 0.0           | -               |
| 23.6749 | 6700 | 0.0           | -               |
| 23.8516 | 6750 | 0.0           | -               |
| 24.0283 | 6800 | 0.0           | -               |
| 24.2049 | 6850 | 0.0           | -               |
| 24.3816 | 6900 | 0.0           | -               |
| 24.5583 | 6950 | 0.0           | -               |
| 24.7350 | 7000 | 0.0           | -               |
| 24.9117 | 7050 | 0.0           | -               |
| 25.0883 | 7100 | 0.0           | -               |
| 25.2650 | 7150 | 0.0           | -               |
| 25.4417 | 7200 | 0.0           | -               |
| 25.6184 | 7250 | 0.0           | -               |
| 25.7951 | 7300 | 0.0           | -               |
| 25.9717 | 7350 | 0.0           | -               |
| 26.1484 | 7400 | 0.0           | -               |
| 26.3251 | 7450 | 0.0           | -               |
| 26.5018 | 7500 | 0.0           | -               |
| 26.6784 | 7550 | 0.0           | -               |
| 26.8551 | 7600 | 0.0           | -               |
| 27.0318 | 7650 | 0.0           | -               |
| 27.2085 | 7700 | 0.0           | -               |
| 27.3852 | 7750 | 0.0           | -               |
| 27.5618 | 7800 | 0.0           | -               |
| 27.7385 | 7850 | 0.0           | -               |
| 27.9152 | 7900 | 0.0           | -               |
| 28.0919 | 7950 | 0.0           | -               |
| 28.2686 | 8000 | 0.0           | -               |
| 28.4452 | 8050 | 0.0           | -               |
| 28.6219 | 8100 | 0.0           | -               |
| 28.7986 | 8150 | 0.0           | -               |
| 28.9753 | 8200 | 0.0           | -               |
| 29.1519 | 8250 | 0.0           | -               |
| 29.3286 | 8300 | 0.0           | -               |
| 29.5053 | 8350 | 0.0           | -               |
| 29.6820 | 8400 | 0.0           | -               |
| 29.8587 | 8450 | 0.0           | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->