mini1013 commited on
Commit
7a47212
ยท
verified ยท
1 Parent(s): c6cf148

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,870 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: klue/roberta-base
3
+ library_name: setfit
4
+ metrics:
5
+ - metric
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: (๋ƒ‰๋™)(Vegan)๋„ˆ๋น„์•„๋‹ˆ250g ์Šฌ๋ผ์ด์Šค ์˜ค๋Ž… ์–ด๋ฌต ๋ฐ˜์ฐฌ ํด๋ ˆ์•„๋ฅด
14
+ - text: ๋กฏ๋ฐ์น ์„ฑ์Œ๋ฃŒ ์น ์„ฑ ์‚ฌ์ด๋‹ค 355ml 12๊ฐœ์ž… ์ค‘ํŽ˜ํŠธ_์ œ๋กœ ์ฝ”์นด์ฝœ๋ผ 500ml 24๊ฐœ์ž… ์Šน๋ฏผ๋ชฐ
15
+ - text: ํ™ˆํŒŒํ‹ฐ์Œ์‹ ์ผ€์ดํ„ฐ๋ง ์ƒ์ผํŒฉ15์ข… ์ธ์ฒœ์ถœ์žฅ๋ท”ํŽ˜ ์ง‘๋“ค์ด ๋ฐฐ๋‹ฌ ๋Œ์ž”์น˜์ƒ ์†Œ๊ทœ๋ชจ ์†๋‹˜์ดˆ๋Œ€์š”๋ฆฌ ์ƒ์ผํŒฉ15์ข…(์ผํšŒ์šฉ๊ธฐ) -20000์›ํ• ์ธ_12์›”_2์ผ
16
+ (์ฃผ)์…€๋ฃจ์ฒด
17
+ - text: 50๋…„์ „ํ†ต ๋Œ€ํ˜„์ƒํšŒ ์ €์˜จ์••์ฐฉ ์ฐธ๊ธฐ๋ฆ„ 350ml / ๋งค์ผ์ฐฉ์œ  ๋ฐฉ์•—๊ฐ„ 10.๊ฒ€์€๊นจ์ฐธ๊ธฐ๋ฆ„180ml ์ฃผ์‹ํšŒ์‚ฌ ๋Œ€ํ˜„์ƒํšŒ
18
+ - text: ๋‹ดํ„ฐ ํฌ์ผ“๋ชฌ ์ฝค๋ถ€์ฐจ ์ƒค์ธ๋จธ์Šค์บฃ 10T +์ปคํ”ผ๋ฏน์Šค ์Šคํ‹ฑ 2T ์˜ค๋ ˆ์˜ค ๊ณผ์ž_๋ฆฌ์ธ  ํฌ๋ž˜์ปค ์น˜์ฆˆ 96g ์ฃผ์‹ํšŒ์‚ฌ ๊ฒฝ์ผ์ข…ํ•ฉ์‹ํ’ˆ ์ผ€์ด๋งˆํŠธ๋ชฐ
19
+ inference: true
20
+ model-index:
21
+ - name: SetFit with klue/roberta-base
22
+ results:
23
+ - task:
24
+ type: text-classification
25
+ name: Text Classification
26
+ dataset:
27
+ name: Unknown
28
+ type: unknown
29
+ split: test
30
+ metrics:
31
+ - type: metric
32
+ value: 0.9219075463944795
33
+ name: Metric
34
+ ---
35
+
36
+ # SetFit with klue/roberta-base
37
+
38
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [klue/roberta-base](https://huggingface.co/klue/roberta-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
39
+
40
+ The model has been trained using an efficient few-shot learning technique that involves:
41
+
42
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
43
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
44
+
45
+ ## Model Details
46
+
47
+ ### Model Description
48
+ - **Model Type:** SetFit
49
+ - **Sentence Transformer body:** [klue/roberta-base](https://huggingface.co/klue/roberta-base)
50
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
51
+ - **Maximum Sequence Length:** 512 tokens
52
+ - **Number of Classes:** 22 classes
53
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
54
+ <!-- - **Language:** Unknown -->
55
+ <!-- - **License:** Unknown -->
56
+
57
+ ### Model Sources
58
+
59
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
60
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
61
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
62
+
63
+ ### Model Labels
64
+ | Label | Examples |
65
+ |:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
66
+ | 9.0 | <ul><li>'๋ช…์ธ ํ™์Œ๋ฆฌ ์ฒญ๋งค์‹ค๋†์› ๊ณ ์ถ”์žฅ์žฅ์•„์ฐŒ 430g ๋ฐฅ๋ฐ˜์ฐฌ ๋ฐ‘๋ฐ˜์ฐฌ ์งฑ์•„์ฐŒ ์งฑ์•„์น˜ ๋ฃฐ๋ฃจ๋ž„๋ผ'</li><li>'๋ง˜ํ”Œ๋ ˆ์ด ๋‹น๋‡จ์‹๋‹จ ์ฃผ 1ํšŒ ๋ฐฐ์†ก(๊ฑด๊ฐ•์‹ ๋ฐ˜์ฐฌ ์‹๋‹จํ‘œ ๊ฑด๊ฐ•์‹๋‹จ ๋ฐฐ๋‹ฌ ์ €๋‹น์‹) 1๊ฐœ์›” ๊ตฌ๋… ์ถ”๊ฐ€์•ˆํ•จ +0์›_๋ฐ˜์ฐฌ ์ถ”๊ฐ€ +37000์› ๊ฐ•๋‚˜์˜'</li><li>'์ฒญ์šฐ ์ง„์งœ ๋ง›์žˆ๋Š” ๋”๋• ๋ฌด์นจ 4kg ๊ตญ๋‚ด์ œ์กฐ ๋”๋•๋ฌด์นจ 4kg ์ฃผ์‹ํšŒ์‚ฌ ์ฒญ์šฐ์‹ํ’ˆ'</li></ul> |
67
+ | 0.0 | <ul><li>'๋ฒ ์ด๋น„๋ฝ 19์ข… ์•„๊ธฐ์œ ์‚ฐ๊ท  ์š”๊ตฌ๋ฅดํŠธ๋ง› ์•„์—ฐํ•จ์œ  2๊ฐœ์›”๋ถ„ ๋Œ ์œ ์•„ ์–ด๋ฆฐ์ด 5.(์•ก์ƒ๋น„ํƒ€๋ฏผD) ํ†กํ†ก ๋“œ๋กญํ˜•์œ ์‚ฐ๊ท  1BOX ์ฃผ์‹ํšŒ์‚ฌ ํ—ˆ๋‹ˆ์›ฐ์Šค(Honeywells Co., Ltd.)'</li><li>'์‚ฌ์กฐํ•ดํ‘œ ์ฐน์Œ€๊ฐ€๋ฃจ 350g ๊ฑด์šฐํ‘ธ๋“œ'</li><li>'๋ฐ•๋ ฅ ์Œ€๊ฐ€๋ฃจ ๊ตญ์‚ฐ 3kg ํ–‡์Œ€๋งˆ๋ฃจ ๋Œ€๋‘ ๋งŒ์ˆ˜f&b'</li></ul> |
68
+ | 2.0 | <ul><li>'ํฌ์ŠคํŠธ ์ฝ˜ํ‘ธ๋ผ์ดํŠธ600g ํฌ์ŠคํŠธ ์ฝ˜ํ‘ธ๋ผ์ดํŠธ600g+์˜ค๋ ˆ์˜ค์˜ค์ฆˆ30g ์‹ ์›๋ฌผ๋ฅ˜'</li><li>'๋ฏธ์„ฑํŒจ๋ฐ€๋ฆฌ ํŠธ๋กœํ”ผ์นผ ํ‘ธ๋”ฉ 708g ์˜ค์Žˆ'</li><li>'ํ•œ์–‘์‹ํ’ˆ์˜ค์ง•์–ด์ˆ๋‹ค๋ฆฌ 20g 10๊ฐœ ์ฃผ์‹ํšŒ์‚ฌ ๋ฐ€๋ ˆ'</li></ul> |
69
+ | 12.0 | <ul><li>'์—”๋ฆฌ๋„ ํ•ด๋ฐ”๋ผ๊ธฐ์”จ์œ  ์„ ๋ฌผ์„ธํŠธ 250ml 2๋ณ‘ ์‡ผํ•‘์‚ฌ๊ฑฐ๋ฆฌ'</li><li>'cj ๋ฐฑ์„ค ์ œ์ผ์ œ๋‹น ์ฝฉ๊ธฐ๋ฆ„1.8L ํฌ๋„์”จ์œ  900ml ํ•œ๊ฒฐ๋งˆ์ผ“'</li><li>'์˜ค๋šœ๊ธฐ ํ”„๋ ˆ์Šค์ฝ” ์นด๋†€๋ผ์œ  900ml (์ฃผ) ์ฝ”๋ฆฌ์•„์•Œ. ์— . ์”จ'</li></ul> |
70
+ | 6.0 | <ul><li>'๋ฉ”์ดํ”ŒํŠธ๋ฆฌ ๊ฐ€๋ฅด์‹œ๋‹ˆ์•„ ํ”Œ๋Ÿฌ์ŠคํŠธ๋ฆฌํ”Œ 800mgx112์ • ๋Ÿฌ๋ธ”๋ฆฌ๋ฃจ๋‚˜'</li><li>'๋จธ์Šฌํ…Œํฌ ์—์„ผ์…œ ์‹œ๋ฆฌ์ฆˆ ํ”Œ๋ž˜ํ‹ฐ๋„˜ ํฌ๋ ˆ์•„ํ‹ด ๋ฌด๋ง› 400g 14.11oz ๋””์ œ์ด์ƒต'</li><li>'[3์›” 25์ผ ์ถœ์‹œ] ๋ฐ”์ดํƒˆ๋ทฐํ‹ฐ ๋ฉ”ํƒ€๊ทธ๋ฆฐ ์Šฌ๋ฆผ์—… 30์ผ new ๋ฉ”ํƒ€๊ทธ๋ฆฐ์Šฌ๋ฆผ์—… (์ฃผ)์•„๋ชจ๋ ˆํผ์‹œํ”ฝ'</li></ul> |
71
+ | 18.0 | <ul><li>'์ฒญ์ •์‹ํ’ˆ 23๋…„ ๊ตญ์‚ฐ ๊ณ ์šด ํ–‡ ๊ณ ์ถง๊ฐ€๋ฃจ 1kg CJA01-9_(์ฒญ์–‘)๊ตต์€ ๊ณ ์ถ”๊ฐ€๋ฃจ 1kg ์œ ํ•œํ‚ด๋ฒŒ๋ฆฌ ์—์Šค์™€์ด'</li><li>'๋ฐฑ์„ค ์š”๋ฆฌ๋‹น 5kg ๋‹น์ผ ์ถœ๋ฐœ (์ฃผ) ๋ฐ”์ฟฐ'</li><li>'ํ์› ๊ฐˆ์ƒ‰์„คํƒ• 15KG ์ง€์šฐFun'</li></ul> |
72
+ | 4.0 | <ul><li>'์„๊ด€๋™๋–ก๋ณถ์ด ๊ธฐ๋ฆ„์Œ€๋–ก๋ณถ์ด 1ํŒฉ (์ฃผ)์˜ค๋ฆฌ์—”ํŠธํ‘ธ๋“œ'</li><li>'๋žญ์ปค ์†Œ์Šค ๋‹ญ๊ฐ€์Šด์‚ด ๋„์‹œ๋ฝ ๊ฐˆ๋ฆญ์Šคํ…Œ์ดํฌ 250g X 20ํŒฉ / ์‹๋‹จ ์ง์žฅ์ธ ์ ์‹ฌ ๊ณ ๋‹จ๋ฐฑ ์งฌ๋ฝ• 20ํŒฉ (์ฃผ)ํ‘ธ๋“œ๋‚˜๋ฌด'</li><li>'CJ ์•„์ด๊ฐ„์‹ ๊ณ ๋‹จ๋ฐฑ ๊ฑด๊ฐ•ํ•œ๊ฐ„์‹ CJ ๊ณ ๋‹จ๋ฐฑ์ €๋‹น ๋„์‹œ๋ฝ 500 ๋ฟŒ๋ฆฌ์ฑ„์†Œ์ฐœ๋‹ญ 404g ํ•œ๋ผ์‹์‚ฌ ํ‘ธ์งํ•œ๋ฐ˜์ฐฌ ์บ ํ•‘์š”๋ฆฌ ์ง€๋‹ˆ๋งˆ์ผ“'</li></ul> |
73
+ | 21.0 | <ul><li>'๋™์›์—ํ”„์•ค๋น„ ๋™์›์ฐธ์น˜ ์‚ด์ฝ”๊ธฐ ์ธ ์›Œํ„ฐ 100g 1๊ฐœ 1๊ฐœ(์žฌํฌ์žฅ์œผ๋กœ ์ธํ•œ ๋ฐฐ์†ก์ง€์—ฐ ๋ฐœ์ƒ ๊ฐ€๋Šฅ) ํ…Œ์ผ„์ข…ํ•ฉ์ƒ์‚ฌ'</li><li>'๋™์„œ์‹ํ’ˆ ๋™์„œ ๋ฆฌ์น˜์Šค ์Šฌ๋ผ์ด์Šค ๋ธ”๋ž™์˜ฌ๋ฆฌ๋ธŒ 3kg ์ฃผ์‹ํšŒ์‚ฌ ๋™์„œ'</li><li>'๋™์›์ฐธ์น˜ ํŠœ๋‚˜๋ฆฌ์ฑ” O-48ํ˜ธ ์„ ๋ฌผ์„ธํŠธ ๋ช…์ ˆ ์„ ๋ฌผ์„ธํŠธ (์ฃผ)๊ณจ๋“ ๋งˆ๋ ˆ'</li></ul> |
74
+ | 17.0 | <ul><li>'์…ฐํ”„๋งˆ์Šคํ„ฐ ์‰ํ”„๋งˆ์Šคํ„ฐ ์‹์šฉ์ƒ‰์†Œ 0.7oz ๋ฆฌ์ฟ ์•„์ ค ๋งˆ์นด๋กฑ์ƒ‰์†Œ ๋ฐ˜์•ก์ƒํƒ€์ž… ๋ฏผํŠธ๊ทธ๋ฆฐ ์œ„๋ฒ ์ดํฌ'</li><li>'ํ์› ์™€ํ”Œ๋ฏน์Šค2 10kg / ์˜ค๊ทธ๋ผ์šด๋“œ'</li><li>'์”จ์•—์ฐน์Œ€ํ˜ธ๋–ก 100g 10๊ฐœ ๊ฒจ์šธ ์•„์ด๊ฐ„์‹ ํ™”์ธ์–‘ํ–‰'</li></ul> |
75
+ | 20.0 | <ul><li>'ํ‘์—ผ์†Œ์ •์œก(๋ผˆ์—†์ด) ๋ถ€์œ„์„ ํƒ 500g ๋’ท๋‹ค๋ฆฌ์‚ด์ˆ˜์œก์šฉ(๊ป์งˆํฌํ•จ/์ฐ์ง€์•Š์Œ) 500g ์„ ๋ด‰์œ ํ†ต'</li><li>'๋ง›์—†์œผ๋ฉด ์ง„์งœ ํ™˜๋ถˆ, ํ˜ธ์ฃผ์‚ฐ ํ”„๋ Œ์น˜๋ž™ ์–‘๊ณ ๊ธฐ ์–‘๊ป๋จธ๊ธ€๋žจ'</li><li>'(๊ณ ๊ธฐ์ฒœ๊ตญ) ์™•๋ชฉ์‚ด 400g ๋ชฉ์ „์ง€ ์‚ผ๊ฒน์‚ด ๋Œ€ํŒจ์‚ผ๊ฒน์‚ด ๋ณด์Œˆ์šฉ ์บ ํ•‘์šฉ ์—์–ดํ”„๋ผ์ด์–ด 04.๊ณ ๊ธฐ์ฒœ๊ตญ ์‚ผ๊ฒน์‚ด(๊ตฌ์ด์šฉ)400g ๋†์—…ํšŒ์‚ฌ๋ฒ•์ธ ์ฃผ์‹ํšŒ์‚ฌ ํ•ด๋“œ๋ฆผ'</li></ul> |
76
+ | 15.0 | <ul><li>'์ผํšŒ์šฉ ๊ผฌ๋งˆ์ถ˜์žฅ 6g 400๊ฐœ์ž… ์‚ฌ์žํ‘œ ์ค‘์ฐฌ๋ช…๊ฐ€ ํœด๋Œ€์šฉ ์ถ˜์žฅ ์•Œ์ด์ฆˆ์›ฐ'</li><li>'๋งŒ๋Šฅ ์š”๋ฆฌ์ฃผ ( ๋ง›์ˆ  ์š”๋ฆฌ์ˆ  ๋ฏธํ–ฅ ๋ฏธ๋ฆฐ ์ง„์งœ ๋ฏธ๋ฆผ ) ํ˜ผ๋ฏธ๋ฆฐ 1L (ํŽ˜ํŠธ) x 12๊ฐœ (๋ฐ•์Šค) ๋Œ€ํ•œ๋ฌด์—ํƒ€์ด ํ‚ฅ๋ณต์‹ฑ'</li><li>'๋ฐ์Šค ๋ฐฑ๋œ์žฅ ๋งˆ์‚ฐ๋ชฝ๊ณ  4K ํŒŒ์ธ์— ์”จ๋””'</li></ul> |
77
+ | 14.0 | <ul><li>'์ฝ”์นด์ฝœ๋ผ ์”จ๊ทธ๋žจ ๋ผ๋ฒจํ”„๋ฆฌ ํ”Œ๋ ˆ์ธ 350ml 24๊ฐœ ๋‚ ์•„๋ณด์ž๋ฒจ๋ฅด๋น„'</li><li>'๋‹ดํ„ฐ ํ•ซ์ดˆ์ฝ” 50T ์ฃผ์‹ํšŒ์‚ฌ ํ†ตํ†ต๋งˆํŠธ'</li><li>'์ œํ‹ฐ ์ดˆ์ฝ”๋ ›๋ง› 175ml x 30์บ” ๋‚จ์–‘-๊ณผ์ˆ˜์›์˜ค๋ Œ์ง€190ml x24 (์ฃผ)์ปคํ”ผ๋ชฐ'</li></ul> |
78
+ | 10.0 | <ul><li>'ํฐํƒ€๋‚˜ ์˜ค๋ฆฌ์—”ํƒˆ ๋“œ๋ ˆ์‹ฑ 270g ์ฃผ์‹ํšŒ์‚ฌ ๋„ค๋„ค๋ฆฐ๋„'</li><li>'์˜ค๋šœ๊ธฐ ๊ฒฝ์–‘์‹ ๋ˆ๊นŒ์Šค์†Œ์Šค 455g ์—์ด์น˜๋ธŒ์ด๋งˆ์ผ“'</li><li>'์˜ค๋šœ๊ธฐ ํ† ๋งˆํ†  ์ผ€์ฐน 500g 1๊ฐœ ๊ตฌ๋””์ฆˆ๋ชฐ'</li></ul> |
79
+ | 16.0 | <ul><li>'1883 ๋ฐ”๋‹๋ผ ์‹œ๋Ÿฝ ์นดํŽ˜ 1022033 23.์†”ํ‹ฐ๋“œ์นด๋ผ๋ฉœ ์‹œ๋Ÿฝ ์•ค๋””์›”๋“œ'</li><li>'ํฌ์ฐฝ ์ œ๋กœ์„คํƒ• ์นดํŽ˜์‹œ๋Ÿฝ 1.5L ์ปคํ”ผ์›๋‘ ์ œ๋กœ์„คํƒ• ์ œ๋กœ์‹œ๋Ÿฝ ์นดํŽ˜์šฉํ’ˆ ๋ธŒ๋ก ์Šค์ฝ”๋ฆฌ์•„(์ฃผ)'</li><li>'1883 ๋ฐ”๋‹๋ผ์‹œ๋Ÿฝ 1000ml ์นดํŽ˜ 1022247 1883 ์‹œ๋‚˜๋ชฌ์‹œ๋Ÿฝ 1000ml ์•ค๋””์›”๋“œ'</li></ul> |
80
+ | 1.0 | <ul><li>'biild ๋นŒ๋“œ ํ”„๋ฆฌ๋ฏธ์—„ ํ…Œํ”„ ๋ฐœํšจ ํšจ์†Œ 30ํฌ x 1๋ฐ•์Šค ํ”„๋ผ์ž„์ปค๋จธ์Šค'</li><li>'์•”ํ™˜์ž ์˜์–‘์‹ ์ข…๊ทผ๋‹น๊ฑด๊ฐ• Dr.Care ์บ”์„œ์ฝ”์น˜ 200mlX18๊ฐœ 18๊ฐœ ์ข…๊ทผ๋‹น๊ฑด๊ฐ•(์ฃผ)'</li><li>'๋Œ€์ƒ์›ฐ๋ผ์ดํ”„ ๋‰ด์ผ€์–ด ์ธํ•ธ์„œ 200ml 1ํŒฉ ์ฃผ์‹ํšŒ์‚ฌ ์•„์ด์ง€๋น„'</li></ul> |
81
+ | 13.0 | <ul><li>'๋ฐ€๋žŒ ๋™๋ฌผ์„ฑ ํœ˜ํ•‘ํฌ๋ฆผ ์œ ์ง€๋ฐฉ 35ํ”„๋กœ MILRAM WHIPPING CREAM ์ฃผ์‹ํšŒ์‚ฌ ์ฝฉ์ฝฉ'</li><li>'๋งค์ผ ์—ฐ์œ  ์†Œํ”„ํŠธ 1๊ฐœ 500g ๊ฐ€๋‹น์—ฐ์œ  ๋งค์ผ ์—ฐ์œ  500g(๋นจ๊ฐ•) x 1๊ฐœ ๋งค์ผ์œ ์—…(์ฃผ) ์กฐ์น˜์›๋Œ€๋ฆฌ์ '</li><li>'๋ณด๋ผํ‹ฐ์•Œ ํ”„๋ ˆ์ง€๋ฉ ๋ฌด์—ผ๋ฒ„ํ„ฐํŒฉ 400g x 20๊ฐœ ๋ฐ•๊ธธ์šฉ'</li></ul> |
82
+ | 3.0 | <ul><li>'ํƒœ์–‘์„ ๋‹ด์€ ๊น€์น˜] ์˜ค์ด์†Œ๋ฐ•์ด ๊ตญ์‚ฐ๊น€์น˜ 5kg (์ฃผ)์ง€์„ ์ธํฌํ…'</li><li>'๋น„๋น„๊ณ  ์ด๊ฐ๊น€์น˜ 900g ๋ฏธ๋ฃจ์‹œ์Šคํ…œ'</li><li>'์˜ˆ์†Œ๋‹ด ํŠน๋ฌต์€์ง€3kg ์˜ˆ์†Œ๋‹ด ํŠน๋ฌต์€์ง€3kg ์›์ธ„์Ÿˆ์ฑ '</li></ul> |
83
+ | 8.0 | <ul><li>'์†๋‹˜์ดˆ๋Œ€์š”๋ฆฌ ๋งค์ฝค ๋น ๋„ค ํฌ๋ฆผ ํŒŒ์Šคํƒ€ ๋ฐ€ํ‚คํŠธ 2์ธ๋ถ„ ์ฃผ์‹ํšŒ์‚ฌ ์ œ์ผ์”จ์—”์—ํ”„(C&F)'</li><li>'๊ธฐ์žฅ๋์ง‘ ์˜ค์ง ์ „๋ณต์ฃฝ ๋ฐ€ํ‚คํŠธ ์ „๋ณต๋‚ด์žฅ ๊ฐ„ํŽธ ์˜์–‘์ฃฝ 6์›” 7์ผ(๊ธˆ) ์ฃผ์‹ํšŒ์‚ฌ ๊ธฐ์žฅ๋์ง‘'</li><li>'ํผ์ง€์•ค๏ฟฝ๏ฟฝ๊ทธ ๋ฐ•์Šค์ผ€์ดํ„ฐ๋ง ์„œ์šธ๊ฒฝ๊ธฐ ์„ธ๋ฏธ๋‚˜ ์ƒ์ผํŒŒํ‹ฐ ์˜คํ”ˆ์‹ ์ผ€์ดํ„ฐ๋ง 07. ์ดํƒˆ๋ฆฌ์•ˆ๋จธ์‰ฌ๋ฃธ์น˜์•„๋ฐ”ํƒ€ 10pcs ํผ์ง€์•คํ”ผ๊ทธ'</li></ul> |
84
+ | 11.0 | <ul><li>'๋•ํ™”๋ช…๋ž€ ์ €์—ผ ์ƒ‰์†Œ ์•„์งˆ์‚ฐ๋‚˜ํŠธ๋ฅจ์—†๋Š” ๊ฐ„ํŽธํ•˜๊ฒŒ ์•Œ๋กœ๋งŒ ๋ฐœ๋ผ๋‚ธ ํŠœ๋ธŒ ๋ช…๋ž€์ “ 1+1ํŒฉ 220g 4. ์†ก์•Œ์†ก์•Œ๋ช…๋ž€ 1ํŒฉ_3. ์ž๋ฅธ๋ช…๋ž€ 1ํŒฉ (์ฃผ)๋›์•ค๋‹ป'</li><li>'๋งˆ์ผ“ํ”„๋กœ์ฆŒ ์—์–ดํ”„๋ผ์ด์–ด์šฉ ํŠ€๊น€ ๋ˆ๊นŒ์Šค ์ƒˆ์šฐ๊นŒ์Šค ๊ณจ๋ผ๋‹ด๊ธฐ ํŠ€๊ฒจ๋‚˜์˜จ 60์ƒˆ์šฐ 320g (์ฃผ)๋”๋ธ”ํ”ผ์‰ฌ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜์ฆˆ'</li><li>'[๊ฐ€์„๋ฐ”๋‹ค] ๋ถ€๋“œ๋Ÿฌ์šด ๋งˆ๋ฅธ์˜ค์ง•์–ด 20๋งˆ๋ฆฌ (๊ฑด์˜ค์ง•์–ด) ๋งˆ๋ฅธ์˜ค์ง•์–ด_20๋งˆ๋ฆฌ 1.7kg ๊ฐ€์„๋ฐ”๋‹ค'</li></ul> |
85
+ | 7.0 | <ul><li>'๋ฉด์‚ฌ๋ž‘ ์ซ„๋ฉด 2kg 220647 ์ฒญ์šฐ๋ฆผ ์ซ„๋ฉด 2KG ๋จธ์น˜๋ฐ”์ž‰'</li><li>'๋†์‹ฌ ์งœํŒŒ๊ฒŒํ‹ฐ ๋”๋ธ”๋ž™ ๋ด‰์ง€๋ผ๋ฉด 116g x 4๊ฐœ ๋™ํ–‰๋ฆฌํ…Œ์ผ'</li><li>'๋†์‹ฌ ํŠ€๊น€์šฐ๋™ ํฐ์‚ฌ๋ฐœ 111g x16์ž… ์ดˆ๋Œ€๋ฐ• ์ฃผ์‹ํšŒ์‚ฌ๊ฑด์•„์œ ํ†ต'</li></ul> |
86
+ | 5.0 | <ul><li>'GAP์ธ์ฆ ๋‚˜์ฃผ ์‹ ๊ณ ๋ฐฐ ํŠนํ’ˆ 7.5kg (์„ ๋ฌผ์šฉ, ์ œ์ˆ˜์šฉ) ๋‚˜์ฃผ๋ฐฐ 7.5kg(7~10๊ณผ) ๊ณ ๊ธ‰์„ ๋ฌผ์šฉ ์ฃผ์‹ํšŒ์‚ฌ ์• ๋“œ๋„ˆ์Šค'</li><li>'๋ฐค๋œจ๋ž˜ ์šฐ๋ฆฌ๋‚˜๋ผ ๋ง›๋ฐค 50g ๊ณต์ฃผ ์ƒ์œจ๋ฐค ๋ถ€์—ฌ ์•ฝ๋‹จ๋ฐค ํ–‡๋ฐค ์šฐ๋ฆฌ๋‚˜๋ผ๋ง›๋ฐค 50g ์ œ์ด์ผ€์ด์ปดํผ๋‹ˆ'</li><li>'[์ฒญ์˜ค] ์œ ๊ธฐ๋† ๋ฐœ์•„ 10๊ณก ํ˜ผํ•ฉ๊ณก 800g (๊ตญ์‚ฐ์žก๊ณก) ์–ด๋„๋ผ๋‹ค'</li></ul> |
87
+ | 19.0 | <ul><li>'์„ ๋น„ ์ง„ ์ œ์ฃผ ์—๋””์…˜ 48๋„ 750ml ํ† ๋ผ์†Œ์ฃผ ํ•ด์น˜์†Œ์ฃผ ํ•œ๊ตญ ์–‘์ฃผ ํ•˜์ด๋ณผ ์†Œ์ฃผ ๋”ธ๊พน ์ง๋งค์žฅ'</li><li>'์ œ์ฃผ์ƒ˜ ์ œ์ฃผ ์˜ค๋ฉ”๊ธฐ์ˆ  13๋„ 375ml ์•ฝ์ฃผ ๋”ธ๊พน ์ง๋งค์žฅ'</li><li>'์ˆ ํ”ฝ ํ† ๋ผ์†Œ์ฃผ ๋ธ”๋ž™ 40๋„ 750ml TOKKI SOJU BLACK ์ˆ ๋ฒ™์ปค ์ฃผ์‹ํšŒ์‚ฌ ๋†์—…ํšŒ์‚ฌ๋ฒ•์ธ ์ด์ฒœ์ง€์ '</li></ul> |
88
+
89
+ ## Evaluation
90
+
91
+ ### Metrics
92
+ | Label | Metric |
93
+ |:--------|:-------|
94
+ | **all** | 0.9219 |
95
+
96
+ ## Uses
97
+
98
+ ### Direct Use for Inference
99
+
100
+ First install the SetFit library:
101
+
102
+ ```bash
103
+ pip install setfit
104
+ ```
105
+
106
+ Then you can load this model and run inference.
107
+
108
+ ```python
109
+ from setfit import SetFitModel
110
+
111
+ # Download from the ๐Ÿค— Hub
112
+ model = SetFitModel.from_pretrained("mini1013/master_item_fd")
113
+ # Run inference
114
+ preds = model("(๋ƒ‰๋™)(Vegan)๋„ˆ๋น„์•„๋‹ˆ250g ์Šฌ๋ผ์ด์Šค ์˜ค๋Ž… ์–ด๋ฌต ๋ฐ˜์ฐฌ ํด๋ ˆ์•„๋ฅด")
115
+ ```
116
+
117
+ <!--
118
+ ### Downstream Use
119
+
120
+ *List how someone could finetune this model on their own dataset.*
121
+ -->
122
+
123
+ <!--
124
+ ### Out-of-Scope Use
125
+
126
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
127
+ -->
128
+
129
+ <!--
130
+ ## Bias, Risks and Limitations
131
+
132
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
133
+ -->
134
+
135
+ <!--
136
+ ### Recommendations
137
+
138
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
139
+ -->
140
+
141
+ ## Training Details
142
+
143
+ ### Training Set Metrics
144
+ | Training set | Min | Median | Max |
145
+ |:-------------|:----|:-------|:----|
146
+ | Word count | 3 | 9.1898 | 30 |
147
+
148
+ | Label | Training Sample Count |
149
+ |:------|:----------------------|
150
+ | 0.0 | 448 |
151
+ | 1.0 | 579 |
152
+ | 2.0 | 800 |
153
+ | 3.0 | 552 |
154
+ | 4.0 | 1049 |
155
+ | 5.0 | 350 |
156
+ | 6.0 | 800 |
157
+ | 7.0 | 100 |
158
+ | 8.0 | 400 |
159
+ | 9.0 | 414 |
160
+ | 10.0 | 581 |
161
+ | 11.0 | 275 |
162
+ | 12.0 | 450 |
163
+ | 13.0 | 300 |
164
+ | 14.0 | 600 |
165
+ | 15.0 | 422 |
166
+ | 16.0 | 400 |
167
+ | 17.0 | 200 |
168
+ | 18.0 | 571 |
169
+ | 19.0 | 50 |
170
+ | 20.0 | 346 |
171
+ | 21.0 | 450 |
172
+
173
+ ### Training Hyperparameters
174
+ - batch_size: (512, 512)
175
+ - num_epochs: (20, 20)
176
+ - max_steps: -1
177
+ - sampling_strategy: oversampling
178
+ - num_iterations: 40
179
+ - body_learning_rate: (2e-05, 2e-05)
180
+ - head_learning_rate: 2e-05
181
+ - loss: CosineSimilarityLoss
182
+ - distance_metric: cosine_distance
183
+ - margin: 0.25
184
+ - end_to_end: False
185
+ - use_amp: False
186
+ - warmup_proportion: 0.1
187
+ - seed: 42
188
+ - eval_max_steps: -1
189
+ - load_best_model_at_end: False
190
+
191
+ ### Training Results
192
+ | Epoch | Step | Training Loss | Validation Loss |
193
+ |:-------:|:-----:|:-------------:|:---------------:|
194
+ | 0.0006 | 1 | 0.426 | - |
195
+ | 0.0316 | 50 | 0.3663 | - |
196
+ | 0.0631 | 100 | 0.4116 | - |
197
+ | 0.0947 | 150 | 0.3355 | - |
198
+ | 0.1263 | 200 | 0.3032 | - |
199
+ | 0.1578 | 250 | 0.2642 | - |
200
+ | 0.1894 | 300 | 0.2304 | - |
201
+ | 0.2210 | 350 | 0.1933 | - |
202
+ | 0.2525 | 400 | 0.1744 | - |
203
+ | 0.2841 | 450 | 0.1711 | - |
204
+ | 0.3157 | 500 | 0.1426 | - |
205
+ | 0.3472 | 550 | 0.1373 | - |
206
+ | 0.3788 | 600 | 0.1259 | - |
207
+ | 0.4104 | 650 | 0.1016 | - |
208
+ | 0.4419 | 700 | 0.1094 | - |
209
+ | 0.4735 | 750 | 0.0845 | - |
210
+ | 0.5051 | 800 | 0.0845 | - |
211
+ | 0.5366 | 850 | 0.0689 | - |
212
+ | 0.5682 | 900 | 0.0659 | - |
213
+ | 0.5997 | 950 | 0.0526 | - |
214
+ | 0.6313 | 1000 | 0.0547 | - |
215
+ | 0.6629 | 1050 | 0.0446 | - |
216
+ | 0.6944 | 1100 | 0.0508 | - |
217
+ | 0.7260 | 1150 | 0.0388 | - |
218
+ | 0.7576 | 1200 | 0.0322 | - |
219
+ | 0.7891 | 1250 | 0.0257 | - |
220
+ | 0.8207 | 1300 | 0.0236 | - |
221
+ | 0.8523 | 1350 | 0.0226 | - |
222
+ | 0.8838 | 1400 | 0.0191 | - |
223
+ | 0.9154 | 1450 | 0.0287 | - |
224
+ | 0.9470 | 1500 | 0.0254 | - |
225
+ | 0.9785 | 1550 | 0.0181 | - |
226
+ | 1.0101 | 1600 | 0.0272 | - |
227
+ | 1.0417 | 1650 | 0.0203 | - |
228
+ | 1.0732 | 1700 | 0.0191 | - |
229
+ | 1.1048 | 1750 | 0.0252 | - |
230
+ | 1.1364 | 1800 | 0.0221 | - |
231
+ | 1.1679 | 1850 | 0.0147 | - |
232
+ | 1.1995 | 1900 | 0.0184 | - |
233
+ | 1.2311 | 1950 | 0.0142 | - |
234
+ | 1.2626 | 2000 | 0.0032 | - |
235
+ | 1.2942 | 2050 | 0.0144 | - |
236
+ | 1.3258 | 2100 | 0.0126 | - |
237
+ | 1.3573 | 2150 | 0.0145 | - |
238
+ | 1.3889 | 2200 | 0.0119 | - |
239
+ | 1.4205 | 2250 | 0.006 | - |
240
+ | 1.4520 | 2300 | 0.0164 | - |
241
+ | 1.4836 | 2350 | 0.0054 | - |
242
+ | 1.5152 | 2400 | 0.0074 | - |
243
+ | 1.5467 | 2450 | 0.0079 | - |
244
+ | 1.5783 | 2500 | 0.0058 | - |
245
+ | 1.6098 | 2550 | 0.0059 | - |
246
+ | 1.6414 | 2600 | 0.0041 | - |
247
+ | 1.6730 | 2650 | 0.0076 | - |
248
+ | 1.7045 | 2700 | 0.0023 | - |
249
+ | 1.7361 | 2750 | 0.003 | - |
250
+ | 1.7677 | 2800 | 0.0047 | - |
251
+ | 1.7992 | 2850 | 0.001 | - |
252
+ | 1.8308 | 2900 | 0.0006 | - |
253
+ | 1.8624 | 2950 | 0.0012 | - |
254
+ | 1.8939 | 3000 | 0.0011 | - |
255
+ | 1.9255 | 3050 | 0.0016 | - |
256
+ | 1.9571 | 3100 | 0.0009 | - |
257
+ | 1.9886 | 3150 | 0.0008 | - |
258
+ | 2.0202 | 3200 | 0.0015 | - |
259
+ | 2.0518 | 3250 | 0.0008 | - |
260
+ | 2.0833 | 3300 | 0.001 | - |
261
+ | 2.1149 | 3350 | 0.0014 | - |
262
+ | 2.1465 | 3400 | 0.002 | - |
263
+ | 2.1780 | 3450 | 0.0002 | - |
264
+ | 2.2096 | 3500 | 0.0051 | - |
265
+ | 2.2412 | 3550 | 0.0004 | - |
266
+ | 2.2727 | 3600 | 0.0003 | - |
267
+ | 2.3043 | 3650 | 0.0003 | - |
268
+ | 2.3359 | 3700 | 0.0005 | - |
269
+ | 2.3674 | 3750 | 0.0004 | - |
270
+ | 2.3990 | 3800 | 0.0004 | - |
271
+ | 2.4306 | 3850 | 0.0004 | - |
272
+ | 2.4621 | 3900 | 0.0006 | - |
273
+ | 2.4937 | 3950 | 0.0008 | - |
274
+ | 2.5253 | 4000 | 0.0005 | - |
275
+ | 2.5568 | 4050 | 0.0006 | - |
276
+ | 2.5884 | 4100 | 0.0011 | - |
277
+ | 2.6199 | 4150 | 0.0021 | - |
278
+ | 2.6515 | 4200 | 0.0001 | - |
279
+ | 2.6831 | 4250 | 0.0004 | - |
280
+ | 2.7146 | 4300 | 0.0002 | - |
281
+ | 2.7462 | 4350 | 0.0002 | - |
282
+ | 2.7778 | 4400 | 0.002 | - |
283
+ | 2.8093 | 4450 | 0.0007 | - |
284
+ | 2.8409 | 4500 | 0.0004 | - |
285
+ | 2.8725 | 4550 | 0.0001 | - |
286
+ | 2.9040 | 4600 | 0.0001 | - |
287
+ | 2.9356 | 4650 | 0.0005 | - |
288
+ | 2.9672 | 4700 | 0.0018 | - |
289
+ | 2.9987 | 4750 | 0.0001 | - |
290
+ | 3.0303 | 4800 | 0.0001 | - |
291
+ | 3.0619 | 4850 | 0.0001 | - |
292
+ | 3.0934 | 4900 | 0.0014 | - |
293
+ | 3.125 | 4950 | 0.0001 | - |
294
+ | 3.1566 | 5000 | 0.0001 | - |
295
+ | 3.1881 | 5050 | 0.0001 | - |
296
+ | 3.2197 | 5100 | 0.0002 | - |
297
+ | 3.2513 | 5150 | 0.0002 | - |
298
+ | 3.2828 | 5200 | 0.0 | - |
299
+ | 3.3144 | 5250 | 0.0001 | - |
300
+ | 3.3460 | 5300 | 0.0001 | - |
301
+ | 3.3775 | 5350 | 0.0 | - |
302
+ | 3.4091 | 5400 | 0.0001 | - |
303
+ | 3.4407 | 5450 | 0.0001 | - |
304
+ | 3.4722 | 5500 | 0.0009 | - |
305
+ | 3.5038 | 5550 | 0.0003 | - |
306
+ | 3.5354 | 5600 | 0.001 | - |
307
+ | 3.5669 | 5650 | 0.0021 | - |
308
+ | 3.5985 | 5700 | 0.0015 | - |
309
+ | 3.6301 | 5750 | 0.0001 | - |
310
+ | 3.6616 | 5800 | 0.0001 | - |
311
+ | 3.6932 | 5850 | 0.0001 | - |
312
+ | 3.7247 | 5900 | 0.0001 | - |
313
+ | 3.7563 | 5950 | 0.0001 | - |
314
+ | 3.7879 | 6000 | 0.0001 | - |
315
+ | 3.8194 | 6050 | 0.0001 | - |
316
+ | 3.8510 | 6100 | 0.0001 | - |
317
+ | 3.8826 | 6150 | 0.0001 | - |
318
+ | 3.9141 | 6200 | 0.0 | - |
319
+ | 3.9457 | 6250 | 0.0001 | - |
320
+ | 3.9773 | 6300 | 0.0012 | - |
321
+ | 4.0088 | 6350 | 0.0001 | - |
322
+ | 4.0404 | 6400 | 0.0005 | - |
323
+ | 4.0720 | 6450 | 0.0001 | - |
324
+ | 4.1035 | 6500 | 0.0001 | - |
325
+ | 4.1351 | 6550 | 0.0001 | - |
326
+ | 4.1667 | 6600 | 0.0001 | - |
327
+ | 4.1982 | 6650 | 0.0 | - |
328
+ | 4.2298 | 6700 | 0.0001 | - |
329
+ | 4.2614 | 6750 | 0.0003 | - |
330
+ | 4.2929 | 6800 | 0.0001 | - |
331
+ | 4.3245 | 6850 | 0.0007 | - |
332
+ | 4.3561 | 6900 | 0.0002 | - |
333
+ | 4.3876 | 6950 | 0.0001 | - |
334
+ | 4.4192 | 7000 | 0.0004 | - |
335
+ | 4.4508 | 7050 | 0.0001 | - |
336
+ | 4.4823 | 7100 | 0.0002 | - |
337
+ | 4.5139 | 7150 | 0.0001 | - |
338
+ | 4.5455 | 7200 | 0.0 | - |
339
+ | 4.5770 | 7250 | 0.0 | - |
340
+ | 4.6086 | 7300 | 0.0 | - |
341
+ | 4.6402 | 7350 | 0.0 | - |
342
+ | 4.6717 | 7400 | 0.0021 | - |
343
+ | 4.7033 | 7450 | 0.0 | - |
344
+ | 4.7348 | 7500 | 0.0 | - |
345
+ | 4.7664 | 7550 | 0.0001 | - |
346
+ | 4.7980 | 7600 | 0.0004 | - |
347
+ | 4.8295 | 7650 | 0.0001 | - |
348
+ | 4.8611 | 7700 | 0.0002 | - |
349
+ | 4.8927 | 7750 | 0.0001 | - |
350
+ | 4.9242 | 7800 | 0.0001 | - |
351
+ | 4.9558 | 7850 | 0.0 | - |
352
+ | 4.9874 | 7900 | 0.0 | - |
353
+ | 5.0189 | 7950 | 0.0002 | - |
354
+ | 5.0505 | 8000 | 0.0 | - |
355
+ | 5.0821 | 8050 | 0.0001 | - |
356
+ | 5.1136 | 8100 | 0.0 | - |
357
+ | 5.1452 | 8150 | 0.0001 | - |
358
+ | 5.1768 | 8200 | 0.0 | - |
359
+ | 5.2083 | 8250 | 0.0 | - |
360
+ | 5.2399 | 8300 | 0.0 | - |
361
+ | 5.2715 | 8350 | 0.0 | - |
362
+ | 5.3030 | 8400 | 0.0 | - |
363
+ | 5.3346 | 8450 | 0.0 | - |
364
+ | 5.3662 | 8500 | 0.0001 | - |
365
+ | 5.3977 | 8550 | 0.0 | - |
366
+ | 5.4293 | 8600 | 0.0 | - |
367
+ | 5.4609 | 8650 | 0.0 | - |
368
+ | 5.4924 | 8700 | 0.0 | - |
369
+ | 5.5240 | 8750 | 0.0 | - |
370
+ | 5.5556 | 8800 | 0.0001 | - |
371
+ | 5.5871 | 8850 | 0.0001 | - |
372
+ | 5.6187 | 8900 | 0.0 | - |
373
+ | 5.6503 | 8950 | 0.0 | - |
374
+ | 5.6818 | 9000 | 0.0 | - |
375
+ | 5.7134 | 9050 | 0.0001 | - |
376
+ | 5.7449 | 9100 | 0.0001 | - |
377
+ | 5.7765 | 9150 | 0.0005 | - |
378
+ | 5.8081 | 9200 | 0.0053 | - |
379
+ | 5.8396 | 9250 | 0.0 | - |
380
+ | 5.8712 | 9300 | 0.0 | - |
381
+ | 5.9028 | 9350 | 0.0013 | - |
382
+ | 5.9343 | 9400 | 0.0001 | - |
383
+ | 5.9659 | 9450 | 0.0001 | - |
384
+ | 5.9975 | 9500 | 0.0004 | - |
385
+ | 6.0290 | 9550 | 0.0 | - |
386
+ | 6.0606 | 9600 | 0.0 | - |
387
+ | 6.0922 | 9650 | 0.0 | - |
388
+ | 6.1237 | 9700 | 0.0 | - |
389
+ | 6.1553 | 9750 | 0.0 | - |
390
+ | 6.1869 | 9800 | 0.0 | - |
391
+ | 6.2184 | 9850 | 0.0013 | - |
392
+ | 6.25 | 9900 | 0.0006 | - |
393
+ | 6.2816 | 9950 | 0.0 | - |
394
+ | 6.3131 | 10000 | 0.0 | - |
395
+ | 6.3447 | 10050 | 0.0001 | - |
396
+ | 6.3763 | 10100 | 0.0 | - |
397
+ | 6.4078 | 10150 | 0.0 | - |
398
+ | 6.4394 | 10200 | 0.0 | - |
399
+ | 6.4710 | 10250 | 0.0 | - |
400
+ | 6.5025 | 10300 | 0.0 | - |
401
+ | 6.5341 | 10350 | 0.0 | - |
402
+ | 6.5657 | 10400 | 0.0001 | - |
403
+ | 6.5972 | 10450 | 0.0 | - |
404
+ | 6.6288 | 10500 | 0.0002 | - |
405
+ | 6.6604 | 10550 | 0.0 | - |
406
+ | 6.6919 | 10600 | 0.0 | - |
407
+ | 6.7235 | 10650 | 0.0 | - |
408
+ | 6.7551 | 10700 | 0.0 | - |
409
+ | 6.7866 | 10750 | 0.0 | - |
410
+ | 6.8182 | 10800 | 0.0004 | - |
411
+ | 6.8497 | 10850 | 0.0001 | - |
412
+ | 6.8813 | 10900 | 0.0 | - |
413
+ | 6.9129 | 10950 | 0.0 | - |
414
+ | 6.9444 | 11000 | 0.0 | - |
415
+ | 6.9760 | 11050 | 0.0001 | - |
416
+ | 7.0076 | 11100 | 0.0 | - |
417
+ | 7.0391 | 11150 | 0.0 | - |
418
+ | 7.0707 | 11200 | 0.0 | - |
419
+ | 7.1023 | 11250 | 0.0 | - |
420
+ | 7.1338 | 11300 | 0.0 | - |
421
+ | 7.1654 | 11350 | 0.0 | - |
422
+ | 7.1970 | 11400 | 0.0002 | - |
423
+ | 7.2285 | 11450 | 0.0 | - |
424
+ | 7.2601 | 11500 | 0.0 | - |
425
+ | 7.2917 | 11550 | 0.0 | - |
426
+ | 7.3232 | 11600 | 0.0 | - |
427
+ | 7.3548 | 11650 | 0.0 | - |
428
+ | 7.3864 | 11700 | 0.0 | - |
429
+ | 7.4179 | 11750 | 0.0 | - |
430
+ | 7.4495 | 11800 | 0.0 | - |
431
+ | 7.4811 | 11850 | 0.0 | - |
432
+ | 7.5126 | 11900 | 0.0 | - |
433
+ | 7.5442 | 11950 | 0.0 | - |
434
+ | 7.5758 | 12000 | 0.0 | - |
435
+ | 7.6073 | 12050 | 0.0 | - |
436
+ | 7.6389 | 12100 | 0.0002 | - |
437
+ | 7.6705 | 12150 | 0.0 | - |
438
+ | 7.7020 | 12200 | 0.0001 | - |
439
+ | 7.7336 | 12250 | 0.0 | - |
440
+ | 7.7652 | 12300 | 0.0001 | - |
441
+ | 7.7967 | 12350 | 0.0 | - |
442
+ | 7.8283 | 12400 | 0.0003 | - |
443
+ | 7.8598 | 12450 | 0.0 | - |
444
+ | 7.8914 | 12500 | 0.0 | - |
445
+ | 7.9230 | 12550 | 0.0 | - |
446
+ | 7.9545 | 12600 | 0.0001 | - |
447
+ | 7.9861 | 12650 | 0.0001 | - |
448
+ | 8.0177 | 12700 | 0.0 | - |
449
+ | 8.0492 | 12750 | 0.0 | - |
450
+ | 8.0808 | 12800 | 0.0 | - |
451
+ | 8.1124 | 12850 | 0.0 | - |
452
+ | 8.1439 | 12900 | 0.0 | - |
453
+ | 8.1755 | 12950 | 0.0 | - |
454
+ | 8.2071 | 13000 | 0.0 | - |
455
+ | 8.2386 | 13050 | 0.0 | - |
456
+ | 8.2702 | 13100 | 0.0 | - |
457
+ | 8.3018 | 13150 | 0.0 | - |
458
+ | 8.3333 | 13200 | 0.0 | - |
459
+ | 8.3649 | 13250 | 0.0 | - |
460
+ | 8.3965 | 13300 | 0.0 | - |
461
+ | 8.4280 | 13350 | 0.0 | - |
462
+ | 8.4596 | 13400 | 0.0 | - |
463
+ | 8.4912 | 13450 | 0.0024 | - |
464
+ | 8.5227 | 13500 | 0.0 | - |
465
+ | 8.5543 | 13550 | 0.0001 | - |
466
+ | 8.5859 | 13600 | 0.0 | - |
467
+ | 8.6174 | 13650 | 0.0 | - |
468
+ | 8.6490 | 13700 | 0.0 | - |
469
+ | 8.6806 | 13750 | 0.0 | - |
470
+ | 8.7121 | 13800 | 0.0004 | - |
471
+ | 8.7437 | 13850 | 0.0 | - |
472
+ | 8.7753 | 13900 | 0.0 | - |
473
+ | 8.8068 | 13950 | 0.0 | - |
474
+ | 8.8384 | 14000 | 0.0 | - |
475
+ | 8.8699 | 14050 | 0.0 | - |
476
+ | 8.9015 | 14100 | 0.0 | - |
477
+ | 8.9331 | 14150 | 0.0 | - |
478
+ | 8.9646 | 14200 | 0.0 | - |
479
+ | 8.9962 | 14250 | 0.0 | - |
480
+ | 9.0278 | 14300 | 0.0 | - |
481
+ | 9.0593 | 14350 | 0.0 | - |
482
+ | 9.0909 | 14400 | 0.0 | - |
483
+ | 9.1225 | 14450 | 0.0 | - |
484
+ | 9.1540 | 14500 | 0.0 | - |
485
+ | 9.1856 | 14550 | 0.0005 | - |
486
+ | 9.2172 | 14600 | 0.0 | - |
487
+ | 9.2487 | 14650 | 0.0 | - |
488
+ | 9.2803 | 14700 | 0.0 | - |
489
+ | 9.3119 | 14750 | 0.0 | - |
490
+ | 9.3434 | 14800 | 0.0 | - |
491
+ | 9.375 | 14850 | 0.0 | - |
492
+ | 9.4066 | 14900 | 0.0 | - |
493
+ | 9.4381 | 14950 | 0.0 | - |
494
+ | 9.4697 | 15000 | 0.0 | - |
495
+ | 9.5013 | 15050 | 0.0 | - |
496
+ | 9.5328 | 15100 | 0.0 | - |
497
+ | 9.5644 | 15150 | 0.0 | - |
498
+ | 9.5960 | 15200 | 0.0 | - |
499
+ | 9.6275 | 15250 | 0.0 | - |
500
+ | 9.6591 | 15300 | 0.0 | - |
501
+ | 9.6907 | 15350 | 0.0 | - |
502
+ | 9.7222 | 15400 | 0.0 | - |
503
+ | 9.7538 | 15450 | 0.0 | - |
504
+ | 9.7854 | 15500 | 0.0018 | - |
505
+ | 9.8169 | 15550 | 0.0001 | - |
506
+ | 9.8485 | 15600 | 0.0 | - |
507
+ | 9.8801 | 15650 | 0.0 | - |
508
+ | 9.9116 | 15700 | 0.0 | - |
509
+ | 9.9432 | 15750 | 0.0 | - |
510
+ | 9.9747 | 15800 | 0.0 | - |
511
+ | 10.0063 | 15850 | 0.0 | - |
512
+ | 10.0379 | 15900 | 0.0 | - |
513
+ | 10.0694 | 15950 | 0.0 | - |
514
+ | 10.1010 | 16000 | 0.0 | - |
515
+ | 10.1326 | 16050 | 0.0 | - |
516
+ | 10.1641 | 16100 | 0.0 | - |
517
+ | 10.1957 | 16150 | 0.0 | - |
518
+ | 10.2273 | 16200 | 0.0 | - |
519
+ | 10.2588 | 16250 | 0.0 | - |
520
+ | 10.2904 | 16300 | 0.0 | - |
521
+ | 10.3220 | 16350 | 0.0 | - |
522
+ | 10.3535 | 16400 | 0.0 | - |
523
+ | 10.3851 | 16450 | 0.0 | - |
524
+ | 10.4167 | 16500 | 0.0 | - |
525
+ | 10.4482 | 16550 | 0.0 | - |
526
+ | 10.4798 | 16600 | 0.0 | - |
527
+ | 10.5114 | 16650 | 0.0 | - |
528
+ | 10.5429 | 16700 | 0.0 | - |
529
+ | 10.5745 | 16750 | 0.0 | - |
530
+ | 10.6061 | 16800 | 0.0 | - |
531
+ | 10.6376 | 16850 | 0.0 | - |
532
+ | 10.6692 | 16900 | 0.0 | - |
533
+ | 10.7008 | 16950 | 0.0 | - |
534
+ | 10.7323 | 17000 | 0.0 | - |
535
+ | 10.7639 | 17050 | 0.0 | - |
536
+ | 10.7955 | 17100 | 0.0 | - |
537
+ | 10.8270 | 17150 | 0.0 | - |
538
+ | 10.8586 | 17200 | 0.0 | - |
539
+ | 10.8902 | 17250 | 0.0 | - |
540
+ | 10.9217 | 17300 | 0.0 | - |
541
+ | 10.9533 | 17350 | 0.0 | - |
542
+ | 10.9848 | 17400 | 0.0 | - |
543
+ | 11.0164 | 17450 | 0.0 | - |
544
+ | 11.0480 | 17500 | 0.0 | - |
545
+ | 11.0795 | 17550 | 0.0002 | - |
546
+ | 11.1111 | 17600 | 0.0001 | - |
547
+ | 11.1427 | 17650 | 0.0 | - |
548
+ | 11.1742 | 17700 | 0.0 | - |
549
+ | 11.2058 | 17750 | 0.0 | - |
550
+ | 11.2374 | 17800 | 0.0 | - |
551
+ | 11.2689 | 17850 | 0.0 | - |
552
+ | 11.3005 | 17900 | 0.0 | - |
553
+ | 11.3321 | 17950 | 0.0 | - |
554
+ | 11.3636 | 18000 | 0.0 | - |
555
+ | 11.3952 | 18050 | 0.0 | - |
556
+ | 11.4268 | 18100 | 0.0 | - |
557
+ | 11.4583 | 18150 | 0.0 | - |
558
+ | 11.4899 | 18200 | 0.0 | - |
559
+ | 11.5215 | 18250 | 0.0 | - |
560
+ | 11.5530 | 18300 | 0.0 | - |
561
+ | 11.5846 | 18350 | 0.0 | - |
562
+ | 11.6162 | 18400 | 0.0 | - |
563
+ | 11.6477 | 18450 | 0.0 | - |
564
+ | 11.6793 | 18500 | 0.0 | - |
565
+ | 11.7109 | 18550 | 0.0 | - |
566
+ | 11.7424 | 18600 | 0.0 | - |
567
+ | 11.7740 | 18650 | 0.0 | - |
568
+ | 11.8056 | 18700 | 0.0 | - |
569
+ | 11.8371 | 18750 | 0.0 | - |
570
+ | 11.8687 | 18800 | 0.0 | - |
571
+ | 11.9003 | 18850 | 0.0 | - |
572
+ | 11.9318 | 18900 | 0.0 | - |
573
+ | 11.9634 | 18950 | 0.0 | - |
574
+ | 11.9949 | 19000 | 0.0 | - |
575
+ | 12.0265 | 19050 | 0.0 | - |
576
+ | 12.0581 | 19100 | 0.0 | - |
577
+ | 12.0896 | 19150 | 0.0 | - |
578
+ | 12.1212 | 19200 | 0.0 | - |
579
+ | 12.1528 | 19250 | 0.0 | - |
580
+ | 12.1843 | 19300 | 0.0 | - |
581
+ | 12.2159 | 19350 | 0.0 | - |
582
+ | 12.2475 | 19400 | 0.0 | - |
583
+ | 12.2790 | 19450 | 0.0 | - |
584
+ | 12.3106 | 19500 | 0.0 | - |
585
+ | 12.3422 | 19550 | 0.0 | - |
586
+ | 12.3737 | 19600 | 0.0 | - |
587
+ | 12.4053 | 19650 | 0.0 | - |
588
+ | 12.4369 | 19700 | 0.0 | - |
589
+ | 12.4684 | 19750 | 0.0 | - |
590
+ | 12.5 | 19800 | 0.0 | - |
591
+ | 12.5316 | 19850 | 0.0 | - |
592
+ | 12.5631 | 19900 | 0.0 | - |
593
+ | 12.5947 | 19950 | 0.0 | - |
594
+ | 12.6263 | 20000 | 0.0 | - |
595
+ | 12.6578 | 20050 | 0.0 | - |
596
+ | 12.6894 | 20100 | 0.0 | - |
597
+ | 12.7210 | 20150 | 0.0 | - |
598
+ | 12.7525 | 20200 | 0.0 | - |
599
+ | 12.7841 | 20250 | 0.0 | - |
600
+ | 12.8157 | 20300 | 0.0 | - |
601
+ | 12.8472 | 20350 | 0.0 | - |
602
+ | 12.8788 | 20400 | 0.0 | - |
603
+ | 12.9104 | 20450 | 0.0 | - |
604
+ | 12.9419 | 20500 | 0.0 | - |
605
+ | 12.9735 | 20550 | 0.0 | - |
606
+ | 13.0051 | 20600 | 0.0 | - |
607
+ | 13.0366 | 20650 | 0.0 | - |
608
+ | 13.0682 | 20700 | 0.0 | - |
609
+ | 13.0997 | 20750 | 0.0 | - |
610
+ | 13.1313 | 20800 | 0.0 | - |
611
+ | 13.1629 | 20850 | 0.0 | - |
612
+ | 13.1944 | 20900 | 0.0 | - |
613
+ | 13.2260 | 20950 | 0.0 | - |
614
+ | 13.2576 | 21000 | 0.0 | - |
615
+ | 13.2891 | 21050 | 0.0 | - |
616
+ | 13.3207 | 21100 | 0.0 | - |
617
+ | 13.3523 | 21150 | 0.0 | - |
618
+ | 13.3838 | 21200 | 0.0 | - |
619
+ | 13.4154 | 21250 | 0.0 | - |
620
+ | 13.4470 | 21300 | 0.0 | - |
621
+ | 13.4785 | 21350 | 0.0 | - |
622
+ | 13.5101 | 21400 | 0.0 | - |
623
+ | 13.5417 | 21450 | 0.0 | - |
624
+ | 13.5732 | 21500 | 0.0 | - |
625
+ | 13.6048 | 21550 | 0.0 | - |
626
+ | 13.6364 | 21600 | 0.0 | - |
627
+ | 13.6679 | 21650 | 0.0001 | - |
628
+ | 13.6995 | 21700 | 0.0 | - |
629
+ | 13.7311 | 21750 | 0.0 | - |
630
+ | 13.7626 | 21800 | 0.0 | - |
631
+ | 13.7942 | 21850 | 0.0 | - |
632
+ | 13.8258 | 21900 | 0.0 | - |
633
+ | 13.8573 | 21950 | 0.0 | - |
634
+ | 13.8889 | 22000 | 0.0 | - |
635
+ | 13.9205 | 22050 | 0.0 | - |
636
+ | 13.9520 | 22100 | 0.0 | - |
637
+ | 13.9836 | 22150 | 0.0 | - |
638
+ | 14.0152 | 22200 | 0.0 | - |
639
+ | 14.0467 | 22250 | 0.0002 | - |
640
+ | 14.0783 | 22300 | 0.0 | - |
641
+ | 14.1098 | 22350 | 0.0 | - |
642
+ | 14.1414 | 22400 | 0.0 | - |
643
+ | 14.1730 | 22450 | 0.0 | - |
644
+ | 14.2045 | 22500 | 0.0 | - |
645
+ | 14.2361 | 22550 | 0.0 | - |
646
+ | 14.2677 | 22600 | 0.0 | - |
647
+ | 14.2992 | 22650 | 0.0 | - |
648
+ | 14.3308 | 22700 | 0.0 | - |
649
+ | 14.3624 | 22750 | 0.0 | - |
650
+ | 14.3939 | 22800 | 0.0 | - |
651
+ | 14.4255 | 22850 | 0.0 | - |
652
+ | 14.4571 | 22900 | 0.0 | - |
653
+ | 14.4886 | 22950 | 0.0 | - |
654
+ | 14.5202 | 23000 | 0.0 | - |
655
+ | 14.5518 | 23050 | 0.0 | - |
656
+ | 14.5833 | 23100 | 0.0 | - |
657
+ | 14.6149 | 23150 | 0.0 | - |
658
+ | 14.6465 | 23200 | 0.0 | - |
659
+ | 14.6780 | 23250 | 0.0 | - |
660
+ | 14.7096 | 23300 | 0.0 | - |
661
+ | 14.7412 | 23350 | 0.0 | - |
662
+ | 14.7727 | 23400 | 0.0 | - |
663
+ | 14.8043 | 23450 | 0.0 | - |
664
+ | 14.8359 | 23500 | 0.0 | - |
665
+ | 14.8674 | 23550 | 0.0 | - |
666
+ | 14.8990 | 23600 | 0.0 | - |
667
+ | 14.9306 | 23650 | 0.0 | - |
668
+ | 14.9621 | 23700 | 0.0 | - |
669
+ | 14.9937 | 23750 | 0.0 | - |
670
+ | 15.0253 | 23800 | 0.0 | - |
671
+ | 15.0568 | 23850 | 0.0 | - |
672
+ | 15.0884 | 23900 | 0.0 | - |
673
+ | 15.1199 | 23950 | 0.0 | - |
674
+ | 15.1515 | 24000 | 0.0 | - |
675
+ | 15.1831 | 24050 | 0.0 | - |
676
+ | 15.2146 | 24100 | 0.0 | - |
677
+ | 15.2462 | 24150 | 0.0 | - |
678
+ | 15.2778 | 24200 | 0.0 | - |
679
+ | 15.3093 | 24250 | 0.0 | - |
680
+ | 15.3409 | 24300 | 0.0 | - |
681
+ | 15.3725 | 24350 | 0.0 | - |
682
+ | 15.4040 | 24400 | 0.0 | - |
683
+ | 15.4356 | 24450 | 0.0 | - |
684
+ | 15.4672 | 24500 | 0.0 | - |
685
+ | 15.4987 | 24550 | 0.0 | - |
686
+ | 15.5303 | 24600 | 0.0 | - |
687
+ | 15.5619 | 24650 | 0.0 | - |
688
+ | 15.5934 | 24700 | 0.0 | - |
689
+ | 15.625 | 24750 | 0.0 | - |
690
+ | 15.6566 | 24800 | 0.0001 | - |
691
+ | 15.6881 | 24850 | 0.0 | - |
692
+ | 15.7197 | 24900 | 0.0 | - |
693
+ | 15.7513 | 24950 | 0.0 | - |
694
+ | 15.7828 | 25000 | 0.0 | - |
695
+ | 15.8144 | 25050 | 0.0 | - |
696
+ | 15.8460 | 25100 | 0.0 | - |
697
+ | 15.8775 | 25150 | 0.0 | - |
698
+ | 15.9091 | 25200 | 0.0 | - |
699
+ | 15.9407 | 25250 | 0.0 | - |
700
+ | 15.9722 | 25300 | 0.0 | - |
701
+ | 16.0038 | 25350 | 0.0 | - |
702
+ | 16.0354 | 25400 | 0.0 | - |
703
+ | 16.0669 | 25450 | 0.0 | - |
704
+ | 16.0985 | 25500 | 0.0 | - |
705
+ | 16.1301 | 25550 | 0.0 | - |
706
+ | 16.1616 | 25600 | 0.0 | - |
707
+ | 16.1932 | 25650 | 0.0 | - |
708
+ | 16.2247 | 25700 | 0.0 | - |
709
+ | 16.2563 | 25750 | 0.0 | - |
710
+ | 16.2879 | 25800 | 0.0 | - |
711
+ | 16.3194 | 25850 | 0.0 | - |
712
+ | 16.3510 | 25900 | 0.0 | - |
713
+ | 16.3826 | 25950 | 0.0 | - |
714
+ | 16.4141 | 26000 | 0.0 | - |
715
+ | 16.4457 | 26050 | 0.0 | - |
716
+ | 16.4773 | 26100 | 0.0 | - |
717
+ | 16.5088 | 26150 | 0.0 | - |
718
+ | 16.5404 | 26200 | 0.0 | - |
719
+ | 16.5720 | 26250 | 0.0 | - |
720
+ | 16.6035 | 26300 | 0.0 | - |
721
+ | 16.6351 | 26350 | 0.0 | - |
722
+ | 16.6667 | 26400 | 0.0 | - |
723
+ | 16.6982 | 26450 | 0.0 | - |
724
+ | 16.7298 | 26500 | 0.0 | - |
725
+ | 16.7614 | 26550 | 0.0 | - |
726
+ | 16.7929 | 26600 | 0.0 | - |
727
+ | 16.8245 | 26650 | 0.0 | - |
728
+ | 16.8561 | 26700 | 0.0 | - |
729
+ | 16.8876 | 26750 | 0.0 | - |
730
+ | 16.9192 | 26800 | 0.0 | - |
731
+ | 16.9508 | 26850 | 0.0 | - |
732
+ | 16.9823 | 26900 | 0.0 | - |
733
+ | 17.0139 | 26950 | 0.0 | - |
734
+ | 17.0455 | 27000 | 0.0 | - |
735
+ | 17.0770 | 27050 | 0.0 | - |
736
+ | 17.1086 | 27100 | 0.0 | - |
737
+ | 17.1402 | 27150 | 0.0 | - |
738
+ | 17.1717 | 27200 | 0.0 | - |
739
+ | 17.2033 | 27250 | 0.0 | - |
740
+ | 17.2348 | 27300 | 0.0 | - |
741
+ | 17.2664 | 27350 | 0.0 | - |
742
+ | 17.2980 | 27400 | 0.0 | - |
743
+ | 17.3295 | 27450 | 0.0 | - |
744
+ | 17.3611 | 27500 | 0.0 | - |
745
+ | 17.3927 | 27550 | 0.0 | - |
746
+ | 17.4242 | 27600 | 0.0 | - |
747
+ | 17.4558 | 27650 | 0.0 | - |
748
+ | 17.4874 | 27700 | 0.0 | - |
749
+ | 17.5189 | 27750 | 0.0 | - |
750
+ | 17.5505 | 27800 | 0.0 | - |
751
+ | 17.5821 | 27850 | 0.0 | - |
752
+ | 17.6136 | 27900 | 0.0 | - |
753
+ | 17.6452 | 27950 | 0.0 | - |
754
+ | 17.6768 | 28000 | 0.0 | - |
755
+ | 17.7083 | 28050 | 0.0 | - |
756
+ | 17.7399 | 28100 | 0.0 | - |
757
+ | 17.7715 | 28150 | 0.0 | - |
758
+ | 17.8030 | 28200 | 0.0 | - |
759
+ | 17.8346 | 28250 | 0.0 | - |
760
+ | 17.8662 | 28300 | 0.0 | - |
761
+ | 17.8977 | 28350 | 0.0 | - |
762
+ | 17.9293 | 28400 | 0.0 | - |
763
+ | 17.9609 | 28450 | 0.0 | - |
764
+ | 17.9924 | 28500 | 0.0 | - |
765
+ | 18.0240 | 28550 | 0.0 | - |
766
+ | 18.0556 | 28600 | 0.0 | - |
767
+ | 18.0871 | 28650 | 0.0 | - |
768
+ | 18.1187 | 28700 | 0.0 | - |
769
+ | 18.1503 | 28750 | 0.0 | - |
770
+ | 18.1818 | 28800 | 0.0 | - |
771
+ | 18.2134 | 28850 | 0.0 | - |
772
+ | 18.2449 | 28900 | 0.0 | - |
773
+ | 18.2765 | 28950 | 0.0 | - |
774
+ | 18.3081 | 29000 | 0.0 | - |
775
+ | 18.3396 | 29050 | 0.0 | - |
776
+ | 18.3712 | 29100 | 0.0 | - |
777
+ | 18.4028 | 29150 | 0.0 | - |
778
+ | 18.4343 | 29200 | 0.0 | - |
779
+ | 18.4659 | 29250 | 0.0 | - |
780
+ | 18.4975 | 29300 | 0.0 | - |
781
+ | 18.5290 | 29350 | 0.0 | - |
782
+ | 18.5606 | 29400 | 0.0 | - |
783
+ | 18.5922 | 29450 | 0.0 | - |
784
+ | 18.6237 | 29500 | 0.0 | - |
785
+ | 18.6553 | 29550 | 0.0 | - |
786
+ | 18.6869 | 29600 | 0.0 | - |
787
+ | 18.7184 | 29650 | 0.0 | - |
788
+ | 18.75 | 29700 | 0.0 | - |
789
+ | 18.7816 | 29750 | 0.0 | - |
790
+ | 18.8131 | 29800 | 0.0 | - |
791
+ | 18.8447 | 29850 | 0.0 | - |
792
+ | 18.8763 | 29900 | 0.0 | - |
793
+ | 18.9078 | 29950 | 0.0 | - |
794
+ | 18.9394 | 30000 | 0.0 | - |
795
+ | 18.9710 | 30050 | 0.0 | - |
796
+ | 19.0025 | 30100 | 0.0 | - |
797
+ | 19.0341 | 30150 | 0.0 | - |
798
+ | 19.0657 | 30200 | 0.0 | - |
799
+ | 19.0972 | 30250 | 0.0 | - |
800
+ | 19.1288 | 30300 | 0.0 | - |
801
+ | 19.1604 | 30350 | 0.0 | - |
802
+ | 19.1919 | 30400 | 0.0 | - |
803
+ | 19.2235 | 30450 | 0.0 | - |
804
+ | 19.2551 | 30500 | 0.0 | - |
805
+ | 19.2866 | 30550 | 0.0 | - |
806
+ | 19.3182 | 30600 | 0.0 | - |
807
+ | 19.3497 | 30650 | 0.0 | - |
808
+ | 19.3813 | 30700 | 0.0 | - |
809
+ | 19.4129 | 30750 | 0.0 | - |
810
+ | 19.4444 | 30800 | 0.0 | - |
811
+ | 19.4760 | 30850 | 0.0 | - |
812
+ | 19.5076 | 30900 | 0.0 | - |
813
+ | 19.5391 | 30950 | 0.0 | - |
814
+ | 19.5707 | 31000 | 0.0 | - |
815
+ | 19.6023 | 31050 | 0.0 | - |
816
+ | 19.6338 | 31100 | 0.0 | - |
817
+ | 19.6654 | 31150 | 0.0 | - |
818
+ | 19.6970 | 31200 | 0.0 | - |
819
+ | 19.7285 | 31250 | 0.0 | - |
820
+ | 19.7601 | 31300 | 0.0 | - |
821
+ | 19.7917 | 31350 | 0.0 | - |
822
+ | 19.8232 | 31400 | 0.0 | - |
823
+ | 19.8548 | 31450 | 0.0 | - |
824
+ | 19.8864 | 31500 | 0.0 | - |
825
+ | 19.9179 | 31550 | 0.0 | - |
826
+ | 19.9495 | 31600 | 0.0 | - |
827
+ | 19.9811 | 31650 | 0.0 | - |
828
+
829
+ ### Framework Versions
830
+ - Python: 3.10.12
831
+ - SetFit: 1.1.0.dev0
832
+ - Sentence Transformers: 3.1.1
833
+ - Transformers: 4.46.1
834
+ - PyTorch: 2.4.0+cu121
835
+ - Datasets: 2.20.0
836
+ - Tokenizers: 0.20.0
837
+
838
+ ## Citation
839
+
840
+ ### BibTeX
841
+ ```bibtex
842
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
843
+ doi = {10.48550/ARXIV.2209.11055},
844
+ url = {https://arxiv.org/abs/2209.11055},
845
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
846
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
847
+ title = {Efficient Few-Shot Learning Without Prompts},
848
+ publisher = {arXiv},
849
+ year = {2022},
850
+ copyright = {Creative Commons Attribution 4.0 International}
851
+ }
852
+ ```
853
+
854
+ <!--
855
+ ## Glossary
856
+
857
+ *Clearly define terms in order to be accessible across audiences.*
858
+ -->
859
+
860
+ <!--
861
+ ## Model Card Authors
862
+
863
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
864
+ -->
865
+
866
+ <!--
867
+ ## Model Card Contact
868
+
869
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
870
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_domain",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.46.1",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.46.1",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:604d5ae61274a83a3ebd7e23c193d2e77b980850d50e891744f930ea80d4940f
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3f2c177052a1fb0cf93f058d2f5042211695a923a3c2a9cd21386469d348e43
3
+ size 136327
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff