Push model using huggingface_hub.
Browse files- 1_Pooling/config.json +10 -0
- README.md +870 -0
- config.json +29 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +4 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +66 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,870 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: klue/roberta-base
|
3 |
+
library_name: setfit
|
4 |
+
metrics:
|
5 |
+
- metric
|
6 |
+
pipeline_tag: text-classification
|
7 |
+
tags:
|
8 |
+
- setfit
|
9 |
+
- sentence-transformers
|
10 |
+
- text-classification
|
11 |
+
- generated_from_setfit_trainer
|
12 |
+
widget:
|
13 |
+
- text: (๋๋)(Vegan)๋๋น์๋250g ์ฌ๋ผ์ด์ค ์ค๋
์ด๋ฌต ๋ฐ์ฐฌ ํด๋ ์๋ฅด
|
14 |
+
- text: ๋กฏ๋ฐ์น ์ฑ์๋ฃ ์น ์ฑ ์ฌ์ด๋ค 355ml 12๊ฐ์
์คํํธ_์ ๋ก ์ฝ์นด์ฝ๋ผ 500ml 24๊ฐ์
์น๋ฏผ๋ชฐ
|
15 |
+
- text: ํํํฐ์์ ์ผ์ดํฐ๋ง ์์ผํฉ15์ข
์ธ์ฒ์ถ์ฅ๋ทํ ์ง๋ค์ด ๋ฐฐ๋ฌ ๋์์น์ ์๊ท๋ชจ ์๋์ด๋์๋ฆฌ ์์ผํฉ15์ข
(์ผํ์ฉ๊ธฐ) -20000์ํ ์ธ_12์_2์ผ
|
16 |
+
(์ฃผ)์
๋ฃจ์ฒด
|
17 |
+
- text: 50๋
์ ํต ๋ํ์ํ ์ ์จ์์ฐฉ ์ฐธ๊ธฐ๋ฆ 350ml / ๋งค์ผ์ฐฉ์ ๋ฐฉ์๊ฐ 10.๊ฒ์๊นจ์ฐธ๊ธฐ๋ฆ180ml ์ฃผ์ํ์ฌ ๋ํ์ํ
|
18 |
+
- text: ๋ดํฐ ํฌ์ผ๋ชฌ ์ฝค๋ถ์ฐจ ์ค์ธ๋จธ์ค์บฃ 10T +์ปคํผ๋ฏน์ค ์คํฑ 2T ์ค๋ ์ค ๊ณผ์_๋ฆฌ์ธ ํฌ๋์ปค ์น์ฆ 96g ์ฃผ์ํ์ฌ ๊ฒฝ์ผ์ข
ํฉ์ํ ์ผ์ด๋งํธ๋ชฐ
|
19 |
+
inference: true
|
20 |
+
model-index:
|
21 |
+
- name: SetFit with klue/roberta-base
|
22 |
+
results:
|
23 |
+
- task:
|
24 |
+
type: text-classification
|
25 |
+
name: Text Classification
|
26 |
+
dataset:
|
27 |
+
name: Unknown
|
28 |
+
type: unknown
|
29 |
+
split: test
|
30 |
+
metrics:
|
31 |
+
- type: metric
|
32 |
+
value: 0.9219075463944795
|
33 |
+
name: Metric
|
34 |
+
---
|
35 |
+
|
36 |
+
# SetFit with klue/roberta-base
|
37 |
+
|
38 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [klue/roberta-base](https://huggingface.co/klue/roberta-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
39 |
+
|
40 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
41 |
+
|
42 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
43 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
44 |
+
|
45 |
+
## Model Details
|
46 |
+
|
47 |
+
### Model Description
|
48 |
+
- **Model Type:** SetFit
|
49 |
+
- **Sentence Transformer body:** [klue/roberta-base](https://huggingface.co/klue/roberta-base)
|
50 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
51 |
+
- **Maximum Sequence Length:** 512 tokens
|
52 |
+
- **Number of Classes:** 22 classes
|
53 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
54 |
+
<!-- - **Language:** Unknown -->
|
55 |
+
<!-- - **License:** Unknown -->
|
56 |
+
|
57 |
+
### Model Sources
|
58 |
+
|
59 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
60 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
61 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
62 |
+
|
63 |
+
### Model Labels
|
64 |
+
| Label | Examples |
|
65 |
+
|:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
66 |
+
| 9.0 | <ul><li>'๋ช
์ธ ํ์๋ฆฌ ์ฒญ๋งค์ค๋์ ๊ณ ์ถ์ฅ์ฅ์์ฐ 430g ๋ฐฅ๋ฐ์ฐฌ ๋ฐ๋ฐ์ฐฌ ์งฑ์์ฐ ์งฑ์์น ๋ฃฐ๋ฃจ๋๋ผ'</li><li>'๋งํ๋ ์ด ๋น๋จ์๋จ ์ฃผ 1ํ ๋ฐฐ์ก(๊ฑด๊ฐ์ ๋ฐ์ฐฌ ์๋จํ ๊ฑด๊ฐ์๋จ ๋ฐฐ๋ฌ ์ ๋น์) 1๊ฐ์ ๊ตฌ๋
์ถ๊ฐ์ํจ +0์_๋ฐ์ฐฌ ์ถ๊ฐ +37000์ ๊ฐ๋์'</li><li>'์ฒญ์ฐ ์ง์ง ๋ง์๋ ๋๋ ๋ฌด์นจ 4kg ๊ตญ๋ด์ ์กฐ ๋๋๋ฌด์นจ 4kg ์ฃผ์ํ์ฌ ์ฒญ์ฐ์ํ'</li></ul> |
|
67 |
+
| 0.0 | <ul><li>'๋ฒ ์ด๋น๋ฝ 19์ข
์๊ธฐ์ ์ฐ๊ท ์๊ตฌ๋ฅดํธ๋ง ์์ฐํจ์ 2๊ฐ์๋ถ ๋ ์ ์ ์ด๋ฆฐ์ด 5.(์ก์๋นํ๋ฏผD) ํกํก ๋๋กญํ์ ์ฐ๊ท 1BOX ์ฃผ์ํ์ฌ ํ๋์ฐ์ค(Honeywells Co., Ltd.)'</li><li>'์ฌ์กฐํดํ ์ฐน์๊ฐ๋ฃจ 350g ๊ฑด์ฐํธ๋'</li><li>'๋ฐ๋ ฅ ์๊ฐ๋ฃจ ๊ตญ์ฐ 3kg ํ์๋ง๋ฃจ ๋๋ ๋ง์f&b'</li></ul> |
|
68 |
+
| 2.0 | <ul><li>'ํฌ์คํธ ์ฝํธ๋ผ์ดํธ600g ํฌ์คํธ ์ฝํธ๋ผ์ดํธ600g+์ค๋ ์ค์ค์ฆ30g ์ ์๋ฌผ๋ฅ'</li><li>'๋ฏธ์ฑํจ๋ฐ๋ฆฌ ํธ๋กํผ์นผ ํธ๋ฉ 708g ์ค์'</li><li>'ํ์์ํ์ค์ง์ด์๋ค๋ฆฌ 20g 10๊ฐ ์ฃผ์ํ์ฌ ๋ฐ๋ '</li></ul> |
|
69 |
+
| 12.0 | <ul><li>'์๋ฆฌ๋ ํด๋ฐ๋ผ๊ธฐ์จ์ ์ ๋ฌผ์ธํธ 250ml 2๋ณ ์ผํ์ฌ๊ฑฐ๋ฆฌ'</li><li>'cj ๋ฐฑ์ค ์ ์ผ์ ๋น ์ฝฉ๊ธฐ๋ฆ1.8L ํฌ๋์จ์ 900ml ํ๊ฒฐ๋ง์ผ'</li><li>'์ค๋๊ธฐ ํ๋ ์ค์ฝ ์นด๋๋ผ์ 900ml (์ฃผ) ์ฝ๋ฆฌ์์. ์ . ์จ'</li></ul> |
|
70 |
+
| 6.0 | <ul><li>'๋ฉ์ดํํธ๋ฆฌ ๊ฐ๋ฅด์๋์ ํ๋ฌ์คํธ๋ฆฌํ 800mgx112์ ๋ฌ๋ธ๋ฆฌ๋ฃจ๋'</li><li>'๋จธ์ฌํ
ํฌ ์์ผ์
์๋ฆฌ์ฆ ํ๋ํฐ๋ ํฌ๋ ์ํด ๋ฌด๋ง 400g 14.11oz ๋์ ์ด์ต'</li><li>'[3์ 25์ผ ์ถ์] ๋ฐ์ดํ๋ทฐํฐ ๋ฉํ๊ทธ๋ฆฐ ์ฌ๋ฆผ์
30์ผ new ๋ฉํ๊ทธ๋ฆฐ์ฌ๋ฆผ์
(์ฃผ)์๋ชจ๋ ํผ์ํฝ'</li></ul> |
|
71 |
+
| 18.0 | <ul><li>'์ฒญ์ ์ํ 23๋
๊ตญ์ฐ ๊ณ ์ด ํ ๊ณ ์ถง๊ฐ๋ฃจ 1kg CJA01-9_(์ฒญ์)๊ตต์ ๊ณ ์ถ๊ฐ๋ฃจ 1kg ์ ํํด๋ฒ๋ฆฌ ์์ค์์ด'</li><li>'๋ฐฑ์ค ์๋ฆฌ๋น 5kg ๋น์ผ ์ถ๋ฐ (์ฃผ) ๋ฐ์ฟฐ'</li><li>'ํ์ ๊ฐ์์คํ 15KG ์ง์ฐFun'</li></ul> |
|
72 |
+
| 4.0 | <ul><li>'์๊ด๋๋ก๋ณถ์ด ๊ธฐ๋ฆ์๋ก๋ณถ์ด 1ํฉ (์ฃผ)์ค๋ฆฌ์ํธํธ๋'</li><li>'๋ญ์ปค ์์ค ๋ญ๊ฐ์ด์ด ๋์๋ฝ ๊ฐ๋ฆญ์คํ
์ดํฌ 250g X 20ํฉ / ์๋จ ์ง์ฅ์ธ ์ ์ฌ ๊ณ ๋จ๋ฐฑ ์งฌ๋ฝ 20ํฉ (์ฃผ)ํธ๋๋๋ฌด'</li><li>'CJ ์์ด๊ฐ์ ๊ณ ๋จ๋ฐฑ ๊ฑด๊ฐํ๊ฐ์ CJ ๊ณ ๋จ๋ฐฑ์ ๋น ๋์๋ฝ 500 ๋ฟ๋ฆฌ์ฑ์์ฐ๋ญ 404g ํ๋ผ์์ฌ ํธ์งํ๋ฐ์ฐฌ ์บ ํ์๋ฆฌ ์ง๋๋ง์ผ'</li></ul> |
|
73 |
+
| 21.0 | <ul><li>'๋์์ํ์ค๋น ๋์์ฐธ์น ์ด์ฝ๊ธฐ ์ธ ์ํฐ 100g 1๊ฐ 1๊ฐ(์ฌํฌ์ฅ์ผ๋ก ์ธํ ๋ฐฐ์ก์ง์ฐ ๋ฐ์ ๊ฐ๋ฅ) ํ
์ผ์ข
ํฉ์์ฌ'</li><li>'๋์์ํ ๋์ ๋ฆฌ์น์ค ์ฌ๋ผ์ด์ค ๋ธ๋์ฌ๋ฆฌ๋ธ 3kg ์ฃผ์ํ์ฌ ๋์'</li><li>'๋์์ฐธ์น ํ๋๋ฆฌ์ฑ O-48ํธ ์ ๋ฌผ์ธํธ ๋ช
์ ์ ๋ฌผ์ธํธ (์ฃผ)๊ณจ๋ ๋ง๋ '</li></ul> |
|
74 |
+
| 17.0 | <ul><li>'์
ฐํ๋ง์คํฐ ์ํ๋ง์คํฐ ์์ฉ์์ 0.7oz ๋ฆฌ์ฟ ์์ ค ๋ง์นด๋กฑ์์ ๋ฐ์ก์ํ์
๋ฏผํธ๊ทธ๋ฆฐ ์๋ฒ ์ดํฌ'</li><li>'ํ์ ์ํ๋ฏน์ค2 10kg / ์ค๊ทธ๋ผ์ด๋'</li><li>'์จ์์ฐน์ํธ๋ก 100g 10๊ฐ ๊ฒจ์ธ ์์ด๊ฐ์ ํ์ธ์ํ'</li></ul> |
|
75 |
+
| 20.0 | <ul><li>'ํ์ผ์์ ์ก(๋ผ์์ด) ๋ถ์์ ํ 500g ๋ท๋ค๋ฆฌ์ด์์ก์ฉ(๊ป์งํฌํจ/์ฐ์ง์์) 500g ์ ๋ด์ ํต'</li><li>'๋ง์์ผ๋ฉด ์ง์ง ํ๋ถ, ํธ์ฃผ์ฐ ํ๋ ์น๋ ์๊ณ ๊ธฐ ์๊ป๋จธ๊ธ๋จ'</li><li>'(๊ณ ๊ธฐ์ฒ๊ตญ) ์๋ชฉ์ด 400g ๋ชฉ์ ์ง ์ผ๊ฒน์ด ๋ํจ์ผ๊ฒน์ด ๋ณด์์ฉ ์บ ํ์ฉ ์์ดํ๋ผ์ด์ด 04.๊ณ ๊ธฐ์ฒ๊ตญ ์ผ๊ฒน์ด(๊ตฌ์ด์ฉ)400g ๋์
ํ์ฌ๋ฒ์ธ ์ฃผ์ํ์ฌ ํด๋๋ฆผ'</li></ul> |
|
76 |
+
| 15.0 | <ul><li>'์ผํ์ฉ ๊ผฌ๋ง์ถ์ฅ 6g 400๊ฐ์
์ฌ์ํ ์ค์ฐฌ๋ช
๊ฐ ํด๋์ฉ ์ถ์ฅ ์์ด์ฆ์ฐ'</li><li>'๋ง๋ฅ ์๋ฆฌ์ฃผ ( ๋ง์ ์๋ฆฌ์ ๋ฏธํฅ ๋ฏธ๋ฆฐ ์ง์ง ๋ฏธ๋ฆผ ) ํผ๋ฏธ๋ฆฐ 1L (ํํธ) x 12๊ฐ (๋ฐ์ค) ๋ํ๋ฌด์ํ์ด ํฅ๋ณต์ฑ'</li><li>'๋ฐ์ค ๋ฐฑ๋์ฅ ๋ง์ฐ๋ชฝ๊ณ 4K ํ์ธ์ ์จ๋'</li></ul> |
|
77 |
+
| 14.0 | <ul><li>'์ฝ์นด์ฝ๋ผ ์จ๊ทธ๋จ ๋ผ๋ฒจํ๋ฆฌ ํ๋ ์ธ 350ml 24๊ฐ ๋ ์๋ณด์๋ฒจ๋ฅด๋น'</li><li>'๋ดํฐ ํซ์ด์ฝ 50T ์ฃผ์ํ์ฌ ํตํต๋งํธ'</li><li>'์ ํฐ ์ด์ฝ๋ ๋ง 175ml x 30์บ ๋จ์-๊ณผ์์์ค๋ ์ง190ml x24 (์ฃผ)์ปคํผ๋ชฐ'</li></ul> |
|
78 |
+
| 10.0 | <ul><li>'ํฐํ๋ ์ค๋ฆฌ์ํ ๋๋ ์ฑ 270g ์ฃผ์ํ์ฌ ๋ค๋ค๋ฆฐ๋'</li><li>'์ค๋๊ธฐ ๊ฒฝ์์ ๋๊น์ค์์ค 455g ์์ด์น๋ธ์ด๋ง์ผ'</li><li>'์ค๋๊ธฐ ํ ๋งํ ์ผ์ฐน 500g 1๊ฐ ๊ตฌ๋์ฆ๋ชฐ'</li></ul> |
|
79 |
+
| 16.0 | <ul><li>'1883 ๋ฐ๋๋ผ ์๋ฝ ์นดํ 1022033 23.์ํฐ๋์นด๋ผ๋ฉ ์๋ฝ ์ค๋์๋'</li><li>'ํฌ์ฐฝ ์ ๋ก์คํ ์นดํ์๋ฝ 1.5L ์ปคํผ์๋ ์ ๋ก์คํ ์ ๋ก์๋ฝ ์นดํ์ฉํ ๋ธ๋ก ์ค์ฝ๋ฆฌ์(์ฃผ)'</li><li>'1883 ๋ฐ๋๋ผ์๋ฝ 1000ml ์นดํ 1022247 1883 ์๋๋ชฌ์๋ฝ 1000ml ์ค๋์๋'</li></ul> |
|
80 |
+
| 1.0 | <ul><li>'biild ๋น๋ ํ๋ฆฌ๋ฏธ์ ํ
ํ ๋ฐํจ ํจ์ 30ํฌ x 1๋ฐ์ค ํ๋ผ์์ปค๋จธ์ค'</li><li>'์ํ์ ์์์ ์ข
๊ทผ๋น๊ฑด๊ฐ Dr.Care ์บ์์ฝ์น 200mlX18๊ฐ 18๊ฐ ์ข
๊ทผ๋น๊ฑด๊ฐ(์ฃผ)'</li><li>'๋์์ฐ๋ผ์ดํ ๋ด์ผ์ด ์ธํธ์ 200ml 1ํฉ ์ฃผ์ํ์ฌ ์์ด์ง๋น'</li></ul> |
|
81 |
+
| 13.0 | <ul><li>'๋ฐ๋ ๋๋ฌผ์ฑ ํํํฌ๋ฆผ ์ ์ง๋ฐฉ 35ํ๋ก MILRAM WHIPPING CREAM ์ฃผ์ํ์ฌ ์ฝฉ์ฝฉ'</li><li>'๋งค์ผ ์ฐ์ ์ํํธ 1๊ฐ 500g ๊ฐ๋น์ฐ์ ๋งค์ผ ์ฐ์ 500g(๋นจ๊ฐ) x 1๊ฐ ๋งค์ผ์ ์
(์ฃผ) ์กฐ์น์๋๋ฆฌ์ '</li><li>'๋ณด๋ผํฐ์ ํ๋ ์ง๋ฉ ๋ฌด์ผ๋ฒํฐํฉ 400g x 20๊ฐ ๋ฐ๊ธธ์ฉ'</li></ul> |
|
82 |
+
| 3.0 | <ul><li>'ํ์์ ๋ด์ ๊น์น] ์ค์ด์๋ฐ์ด ๊ตญ์ฐ๊น์น 5kg (์ฃผ)์ง์ ์ธํฌํ
'</li><li>'๋น๋น๊ณ ์ด๊ฐ๊น์น 900g ๋ฏธ๋ฃจ์์คํ
'</li><li>'์์๋ด ํน๋ฌต์์ง3kg ์์๋ด ํน๋ฌต์์ง3kg ์์ธ์์ฑ '</li></ul> |
|
83 |
+
| 8.0 | <ul><li>'์๋์ด๋์๋ฆฌ ๋งค์ฝค ๋น ๋ค ํฌ๋ฆผ ํ์คํ ๋ฐํคํธ 2์ธ๋ถ ์ฃผ์ํ์ฌ ์ ์ผ์จ์์ํ(C&F)'</li><li>'๊ธฐ์ฅ๋์ง ์ค์ง ์ ๋ณต์ฃฝ ๋ฐํคํธ ์ ๋ณต๋ด์ฅ ๊ฐํธ ์์์ฃฝ 6์ 7์ผ(๊ธ) ์ฃผ์ํ์ฌ ๊ธฐ์ฅ๋์ง'</li><li>'ํผ์ง์ค๏ฟฝ๏ฟฝ๊ทธ ๋ฐ์ค์ผ์ดํฐ๋ง ์์ธ๊ฒฝ๊ธฐ ์ธ๋ฏธ๋ ์์ผํํฐ ์คํ์ ์ผ์ดํฐ๋ง 07. ์ดํ๋ฆฌ์๋จธ์ฌ๋ฃธ์น์๋ฐํ 10pcs ํผ์ง์คํผ๊ทธ'</li></ul> |
|
84 |
+
| 11.0 | <ul><li>'๋ํ๋ช
๋ ์ ์ผ ์์ ์์ง์ฐ๋ํธ๋ฅจ์๋ ๊ฐํธํ๊ฒ ์๋ก๋ง ๋ฐ๋ผ๋ธ ํ๋ธ ๋ช
๋์ 1+1ํฉ 220g 4. ์ก์์ก์๋ช
๋ 1ํฉ_3. ์๋ฅธ๋ช
๋ 1ํฉ (์ฃผ)๋์ค๋ป'</li><li>'๋ง์ผํ๋ก์ฆ ์์ดํ๋ผ์ด์ด์ฉ ํ๊น ๋๊น์ค ์์ฐ๊น์ค ๊ณจ๋ผ๋ด๊ธฐ ํ๊ฒจ๋์จ 60์์ฐ 320g (์ฃผ)๋๋ธํผ์ฌ์ปค๋ฎค๋์ผ์ด์
์ฆ'</li><li>'[๊ฐ์๋ฐ๋ค] ๋ถ๋๋ฌ์ด ๋ง๋ฅธ์ค์ง์ด 20๋ง๋ฆฌ (๊ฑด์ค์ง์ด) ๋ง๋ฅธ์ค์ง์ด_20๋ง๋ฆฌ 1.7kg ๊ฐ์๋ฐ๋ค'</li></ul> |
|
85 |
+
| 7.0 | <ul><li>'๋ฉด์ฌ๋ ์ซ๋ฉด 2kg 220647 ์ฒญ์ฐ๋ฆผ ์ซ๋ฉด 2KG ๋จธ์น๋ฐ์'</li><li>'๋์ฌ ์งํ๊ฒํฐ ๋๋ธ๋ ๋ด์ง๋ผ๋ฉด 116g x 4๊ฐ ๋ํ๋ฆฌํ
์ผ'</li><li>'๋์ฌ ํ๊น์ฐ๋ ํฐ์ฌ๋ฐ 111g x16์
์ด๋๋ฐ ์ฃผ์ํ์ฌ๊ฑด์์ ํต'</li></ul> |
|
86 |
+
| 5.0 | <ul><li>'GAP์ธ์ฆ ๋์ฃผ ์ ๊ณ ๋ฐฐ ํนํ 7.5kg (์ ๋ฌผ์ฉ, ์ ์์ฉ) ๋์ฃผ๋ฐฐ 7.5kg(7~10๊ณผ) ๊ณ ๊ธ์ ๋ฌผ์ฉ ์ฃผ์ํ์ฌ ์ ๋๋์ค'</li><li>'๋ฐค๋จ๋ ์ฐ๋ฆฌ๋๋ผ ๋ง๋ฐค 50g ๊ณต์ฃผ ์์จ๋ฐค ๋ถ์ฌ ์ฝ๋จ๋ฐค ํ๋ฐค ์ฐ๋ฆฌ๋๋ผ๋ง๋ฐค 50g ์ ์ด์ผ์ด์ปดํผ๋'</li><li>'[์ฒญ์ค] ์ ๊ธฐ๋ ๋ฐ์ 10๊ณก ํผํฉ๊ณก 800g (๊ตญ์ฐ์ก๊ณก) ์ด๋๋ผ๋ค'</li></ul> |
|
87 |
+
| 19.0 | <ul><li>'์ ๋น ์ง ์ ์ฃผ ์๋์
48๋ 750ml ํ ๋ผ์์ฃผ ํด์น์์ฃผ ํ๊ตญ ์์ฃผ ํ์ด๋ณผ ์์ฃผ ๋ธ๊พน ์ง๋งค์ฅ'</li><li>'์ ์ฃผ์ ์ ์ฃผ ์ค๋ฉ๊ธฐ์ 13๋ 375ml ์ฝ์ฃผ ๋ธ๊พน ์ง๋งค์ฅ'</li><li>'์ ํฝ ํ ๋ผ์์ฃผ ๋ธ๋ 40๋ 750ml TOKKI SOJU BLACK ์ ๋ฒ์ปค ์ฃผ์ํ์ฌ ๋์
ํ์ฌ๋ฒ์ธ ์ด์ฒ์ง์ '</li></ul> |
|
88 |
+
|
89 |
+
## Evaluation
|
90 |
+
|
91 |
+
### Metrics
|
92 |
+
| Label | Metric |
|
93 |
+
|:--------|:-------|
|
94 |
+
| **all** | 0.9219 |
|
95 |
+
|
96 |
+
## Uses
|
97 |
+
|
98 |
+
### Direct Use for Inference
|
99 |
+
|
100 |
+
First install the SetFit library:
|
101 |
+
|
102 |
+
```bash
|
103 |
+
pip install setfit
|
104 |
+
```
|
105 |
+
|
106 |
+
Then you can load this model and run inference.
|
107 |
+
|
108 |
+
```python
|
109 |
+
from setfit import SetFitModel
|
110 |
+
|
111 |
+
# Download from the ๐ค Hub
|
112 |
+
model = SetFitModel.from_pretrained("mini1013/master_item_fd")
|
113 |
+
# Run inference
|
114 |
+
preds = model("(๋๋)(Vegan)๋๋น์๋250g ์ฌ๋ผ์ด์ค ์ค๋
์ด๋ฌต ๋ฐ์ฐฌ ํด๋ ์๋ฅด")
|
115 |
+
```
|
116 |
+
|
117 |
+
<!--
|
118 |
+
### Downstream Use
|
119 |
+
|
120 |
+
*List how someone could finetune this model on their own dataset.*
|
121 |
+
-->
|
122 |
+
|
123 |
+
<!--
|
124 |
+
### Out-of-Scope Use
|
125 |
+
|
126 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
127 |
+
-->
|
128 |
+
|
129 |
+
<!--
|
130 |
+
## Bias, Risks and Limitations
|
131 |
+
|
132 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
133 |
+
-->
|
134 |
+
|
135 |
+
<!--
|
136 |
+
### Recommendations
|
137 |
+
|
138 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
139 |
+
-->
|
140 |
+
|
141 |
+
## Training Details
|
142 |
+
|
143 |
+
### Training Set Metrics
|
144 |
+
| Training set | Min | Median | Max |
|
145 |
+
|:-------------|:----|:-------|:----|
|
146 |
+
| Word count | 3 | 9.1898 | 30 |
|
147 |
+
|
148 |
+
| Label | Training Sample Count |
|
149 |
+
|:------|:----------------------|
|
150 |
+
| 0.0 | 448 |
|
151 |
+
| 1.0 | 579 |
|
152 |
+
| 2.0 | 800 |
|
153 |
+
| 3.0 | 552 |
|
154 |
+
| 4.0 | 1049 |
|
155 |
+
| 5.0 | 350 |
|
156 |
+
| 6.0 | 800 |
|
157 |
+
| 7.0 | 100 |
|
158 |
+
| 8.0 | 400 |
|
159 |
+
| 9.0 | 414 |
|
160 |
+
| 10.0 | 581 |
|
161 |
+
| 11.0 | 275 |
|
162 |
+
| 12.0 | 450 |
|
163 |
+
| 13.0 | 300 |
|
164 |
+
| 14.0 | 600 |
|
165 |
+
| 15.0 | 422 |
|
166 |
+
| 16.0 | 400 |
|
167 |
+
| 17.0 | 200 |
|
168 |
+
| 18.0 | 571 |
|
169 |
+
| 19.0 | 50 |
|
170 |
+
| 20.0 | 346 |
|
171 |
+
| 21.0 | 450 |
|
172 |
+
|
173 |
+
### Training Hyperparameters
|
174 |
+
- batch_size: (512, 512)
|
175 |
+
- num_epochs: (20, 20)
|
176 |
+
- max_steps: -1
|
177 |
+
- sampling_strategy: oversampling
|
178 |
+
- num_iterations: 40
|
179 |
+
- body_learning_rate: (2e-05, 2e-05)
|
180 |
+
- head_learning_rate: 2e-05
|
181 |
+
- loss: CosineSimilarityLoss
|
182 |
+
- distance_metric: cosine_distance
|
183 |
+
- margin: 0.25
|
184 |
+
- end_to_end: False
|
185 |
+
- use_amp: False
|
186 |
+
- warmup_proportion: 0.1
|
187 |
+
- seed: 42
|
188 |
+
- eval_max_steps: -1
|
189 |
+
- load_best_model_at_end: False
|
190 |
+
|
191 |
+
### Training Results
|
192 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
193 |
+
|:-------:|:-----:|:-------------:|:---------------:|
|
194 |
+
| 0.0006 | 1 | 0.426 | - |
|
195 |
+
| 0.0316 | 50 | 0.3663 | - |
|
196 |
+
| 0.0631 | 100 | 0.4116 | - |
|
197 |
+
| 0.0947 | 150 | 0.3355 | - |
|
198 |
+
| 0.1263 | 200 | 0.3032 | - |
|
199 |
+
| 0.1578 | 250 | 0.2642 | - |
|
200 |
+
| 0.1894 | 300 | 0.2304 | - |
|
201 |
+
| 0.2210 | 350 | 0.1933 | - |
|
202 |
+
| 0.2525 | 400 | 0.1744 | - |
|
203 |
+
| 0.2841 | 450 | 0.1711 | - |
|
204 |
+
| 0.3157 | 500 | 0.1426 | - |
|
205 |
+
| 0.3472 | 550 | 0.1373 | - |
|
206 |
+
| 0.3788 | 600 | 0.1259 | - |
|
207 |
+
| 0.4104 | 650 | 0.1016 | - |
|
208 |
+
| 0.4419 | 700 | 0.1094 | - |
|
209 |
+
| 0.4735 | 750 | 0.0845 | - |
|
210 |
+
| 0.5051 | 800 | 0.0845 | - |
|
211 |
+
| 0.5366 | 850 | 0.0689 | - |
|
212 |
+
| 0.5682 | 900 | 0.0659 | - |
|
213 |
+
| 0.5997 | 950 | 0.0526 | - |
|
214 |
+
| 0.6313 | 1000 | 0.0547 | - |
|
215 |
+
| 0.6629 | 1050 | 0.0446 | - |
|
216 |
+
| 0.6944 | 1100 | 0.0508 | - |
|
217 |
+
| 0.7260 | 1150 | 0.0388 | - |
|
218 |
+
| 0.7576 | 1200 | 0.0322 | - |
|
219 |
+
| 0.7891 | 1250 | 0.0257 | - |
|
220 |
+
| 0.8207 | 1300 | 0.0236 | - |
|
221 |
+
| 0.8523 | 1350 | 0.0226 | - |
|
222 |
+
| 0.8838 | 1400 | 0.0191 | - |
|
223 |
+
| 0.9154 | 1450 | 0.0287 | - |
|
224 |
+
| 0.9470 | 1500 | 0.0254 | - |
|
225 |
+
| 0.9785 | 1550 | 0.0181 | - |
|
226 |
+
| 1.0101 | 1600 | 0.0272 | - |
|
227 |
+
| 1.0417 | 1650 | 0.0203 | - |
|
228 |
+
| 1.0732 | 1700 | 0.0191 | - |
|
229 |
+
| 1.1048 | 1750 | 0.0252 | - |
|
230 |
+
| 1.1364 | 1800 | 0.0221 | - |
|
231 |
+
| 1.1679 | 1850 | 0.0147 | - |
|
232 |
+
| 1.1995 | 1900 | 0.0184 | - |
|
233 |
+
| 1.2311 | 1950 | 0.0142 | - |
|
234 |
+
| 1.2626 | 2000 | 0.0032 | - |
|
235 |
+
| 1.2942 | 2050 | 0.0144 | - |
|
236 |
+
| 1.3258 | 2100 | 0.0126 | - |
|
237 |
+
| 1.3573 | 2150 | 0.0145 | - |
|
238 |
+
| 1.3889 | 2200 | 0.0119 | - |
|
239 |
+
| 1.4205 | 2250 | 0.006 | - |
|
240 |
+
| 1.4520 | 2300 | 0.0164 | - |
|
241 |
+
| 1.4836 | 2350 | 0.0054 | - |
|
242 |
+
| 1.5152 | 2400 | 0.0074 | - |
|
243 |
+
| 1.5467 | 2450 | 0.0079 | - |
|
244 |
+
| 1.5783 | 2500 | 0.0058 | - |
|
245 |
+
| 1.6098 | 2550 | 0.0059 | - |
|
246 |
+
| 1.6414 | 2600 | 0.0041 | - |
|
247 |
+
| 1.6730 | 2650 | 0.0076 | - |
|
248 |
+
| 1.7045 | 2700 | 0.0023 | - |
|
249 |
+
| 1.7361 | 2750 | 0.003 | - |
|
250 |
+
| 1.7677 | 2800 | 0.0047 | - |
|
251 |
+
| 1.7992 | 2850 | 0.001 | - |
|
252 |
+
| 1.8308 | 2900 | 0.0006 | - |
|
253 |
+
| 1.8624 | 2950 | 0.0012 | - |
|
254 |
+
| 1.8939 | 3000 | 0.0011 | - |
|
255 |
+
| 1.9255 | 3050 | 0.0016 | - |
|
256 |
+
| 1.9571 | 3100 | 0.0009 | - |
|
257 |
+
| 1.9886 | 3150 | 0.0008 | - |
|
258 |
+
| 2.0202 | 3200 | 0.0015 | - |
|
259 |
+
| 2.0518 | 3250 | 0.0008 | - |
|
260 |
+
| 2.0833 | 3300 | 0.001 | - |
|
261 |
+
| 2.1149 | 3350 | 0.0014 | - |
|
262 |
+
| 2.1465 | 3400 | 0.002 | - |
|
263 |
+
| 2.1780 | 3450 | 0.0002 | - |
|
264 |
+
| 2.2096 | 3500 | 0.0051 | - |
|
265 |
+
| 2.2412 | 3550 | 0.0004 | - |
|
266 |
+
| 2.2727 | 3600 | 0.0003 | - |
|
267 |
+
| 2.3043 | 3650 | 0.0003 | - |
|
268 |
+
| 2.3359 | 3700 | 0.0005 | - |
|
269 |
+
| 2.3674 | 3750 | 0.0004 | - |
|
270 |
+
| 2.3990 | 3800 | 0.0004 | - |
|
271 |
+
| 2.4306 | 3850 | 0.0004 | - |
|
272 |
+
| 2.4621 | 3900 | 0.0006 | - |
|
273 |
+
| 2.4937 | 3950 | 0.0008 | - |
|
274 |
+
| 2.5253 | 4000 | 0.0005 | - |
|
275 |
+
| 2.5568 | 4050 | 0.0006 | - |
|
276 |
+
| 2.5884 | 4100 | 0.0011 | - |
|
277 |
+
| 2.6199 | 4150 | 0.0021 | - |
|
278 |
+
| 2.6515 | 4200 | 0.0001 | - |
|
279 |
+
| 2.6831 | 4250 | 0.0004 | - |
|
280 |
+
| 2.7146 | 4300 | 0.0002 | - |
|
281 |
+
| 2.7462 | 4350 | 0.0002 | - |
|
282 |
+
| 2.7778 | 4400 | 0.002 | - |
|
283 |
+
| 2.8093 | 4450 | 0.0007 | - |
|
284 |
+
| 2.8409 | 4500 | 0.0004 | - |
|
285 |
+
| 2.8725 | 4550 | 0.0001 | - |
|
286 |
+
| 2.9040 | 4600 | 0.0001 | - |
|
287 |
+
| 2.9356 | 4650 | 0.0005 | - |
|
288 |
+
| 2.9672 | 4700 | 0.0018 | - |
|
289 |
+
| 2.9987 | 4750 | 0.0001 | - |
|
290 |
+
| 3.0303 | 4800 | 0.0001 | - |
|
291 |
+
| 3.0619 | 4850 | 0.0001 | - |
|
292 |
+
| 3.0934 | 4900 | 0.0014 | - |
|
293 |
+
| 3.125 | 4950 | 0.0001 | - |
|
294 |
+
| 3.1566 | 5000 | 0.0001 | - |
|
295 |
+
| 3.1881 | 5050 | 0.0001 | - |
|
296 |
+
| 3.2197 | 5100 | 0.0002 | - |
|
297 |
+
| 3.2513 | 5150 | 0.0002 | - |
|
298 |
+
| 3.2828 | 5200 | 0.0 | - |
|
299 |
+
| 3.3144 | 5250 | 0.0001 | - |
|
300 |
+
| 3.3460 | 5300 | 0.0001 | - |
|
301 |
+
| 3.3775 | 5350 | 0.0 | - |
|
302 |
+
| 3.4091 | 5400 | 0.0001 | - |
|
303 |
+
| 3.4407 | 5450 | 0.0001 | - |
|
304 |
+
| 3.4722 | 5500 | 0.0009 | - |
|
305 |
+
| 3.5038 | 5550 | 0.0003 | - |
|
306 |
+
| 3.5354 | 5600 | 0.001 | - |
|
307 |
+
| 3.5669 | 5650 | 0.0021 | - |
|
308 |
+
| 3.5985 | 5700 | 0.0015 | - |
|
309 |
+
| 3.6301 | 5750 | 0.0001 | - |
|
310 |
+
| 3.6616 | 5800 | 0.0001 | - |
|
311 |
+
| 3.6932 | 5850 | 0.0001 | - |
|
312 |
+
| 3.7247 | 5900 | 0.0001 | - |
|
313 |
+
| 3.7563 | 5950 | 0.0001 | - |
|
314 |
+
| 3.7879 | 6000 | 0.0001 | - |
|
315 |
+
| 3.8194 | 6050 | 0.0001 | - |
|
316 |
+
| 3.8510 | 6100 | 0.0001 | - |
|
317 |
+
| 3.8826 | 6150 | 0.0001 | - |
|
318 |
+
| 3.9141 | 6200 | 0.0 | - |
|
319 |
+
| 3.9457 | 6250 | 0.0001 | - |
|
320 |
+
| 3.9773 | 6300 | 0.0012 | - |
|
321 |
+
| 4.0088 | 6350 | 0.0001 | - |
|
322 |
+
| 4.0404 | 6400 | 0.0005 | - |
|
323 |
+
| 4.0720 | 6450 | 0.0001 | - |
|
324 |
+
| 4.1035 | 6500 | 0.0001 | - |
|
325 |
+
| 4.1351 | 6550 | 0.0001 | - |
|
326 |
+
| 4.1667 | 6600 | 0.0001 | - |
|
327 |
+
| 4.1982 | 6650 | 0.0 | - |
|
328 |
+
| 4.2298 | 6700 | 0.0001 | - |
|
329 |
+
| 4.2614 | 6750 | 0.0003 | - |
|
330 |
+
| 4.2929 | 6800 | 0.0001 | - |
|
331 |
+
| 4.3245 | 6850 | 0.0007 | - |
|
332 |
+
| 4.3561 | 6900 | 0.0002 | - |
|
333 |
+
| 4.3876 | 6950 | 0.0001 | - |
|
334 |
+
| 4.4192 | 7000 | 0.0004 | - |
|
335 |
+
| 4.4508 | 7050 | 0.0001 | - |
|
336 |
+
| 4.4823 | 7100 | 0.0002 | - |
|
337 |
+
| 4.5139 | 7150 | 0.0001 | - |
|
338 |
+
| 4.5455 | 7200 | 0.0 | - |
|
339 |
+
| 4.5770 | 7250 | 0.0 | - |
|
340 |
+
| 4.6086 | 7300 | 0.0 | - |
|
341 |
+
| 4.6402 | 7350 | 0.0 | - |
|
342 |
+
| 4.6717 | 7400 | 0.0021 | - |
|
343 |
+
| 4.7033 | 7450 | 0.0 | - |
|
344 |
+
| 4.7348 | 7500 | 0.0 | - |
|
345 |
+
| 4.7664 | 7550 | 0.0001 | - |
|
346 |
+
| 4.7980 | 7600 | 0.0004 | - |
|
347 |
+
| 4.8295 | 7650 | 0.0001 | - |
|
348 |
+
| 4.8611 | 7700 | 0.0002 | - |
|
349 |
+
| 4.8927 | 7750 | 0.0001 | - |
|
350 |
+
| 4.9242 | 7800 | 0.0001 | - |
|
351 |
+
| 4.9558 | 7850 | 0.0 | - |
|
352 |
+
| 4.9874 | 7900 | 0.0 | - |
|
353 |
+
| 5.0189 | 7950 | 0.0002 | - |
|
354 |
+
| 5.0505 | 8000 | 0.0 | - |
|
355 |
+
| 5.0821 | 8050 | 0.0001 | - |
|
356 |
+
| 5.1136 | 8100 | 0.0 | - |
|
357 |
+
| 5.1452 | 8150 | 0.0001 | - |
|
358 |
+
| 5.1768 | 8200 | 0.0 | - |
|
359 |
+
| 5.2083 | 8250 | 0.0 | - |
|
360 |
+
| 5.2399 | 8300 | 0.0 | - |
|
361 |
+
| 5.2715 | 8350 | 0.0 | - |
|
362 |
+
| 5.3030 | 8400 | 0.0 | - |
|
363 |
+
| 5.3346 | 8450 | 0.0 | - |
|
364 |
+
| 5.3662 | 8500 | 0.0001 | - |
|
365 |
+
| 5.3977 | 8550 | 0.0 | - |
|
366 |
+
| 5.4293 | 8600 | 0.0 | - |
|
367 |
+
| 5.4609 | 8650 | 0.0 | - |
|
368 |
+
| 5.4924 | 8700 | 0.0 | - |
|
369 |
+
| 5.5240 | 8750 | 0.0 | - |
|
370 |
+
| 5.5556 | 8800 | 0.0001 | - |
|
371 |
+
| 5.5871 | 8850 | 0.0001 | - |
|
372 |
+
| 5.6187 | 8900 | 0.0 | - |
|
373 |
+
| 5.6503 | 8950 | 0.0 | - |
|
374 |
+
| 5.6818 | 9000 | 0.0 | - |
|
375 |
+
| 5.7134 | 9050 | 0.0001 | - |
|
376 |
+
| 5.7449 | 9100 | 0.0001 | - |
|
377 |
+
| 5.7765 | 9150 | 0.0005 | - |
|
378 |
+
| 5.8081 | 9200 | 0.0053 | - |
|
379 |
+
| 5.8396 | 9250 | 0.0 | - |
|
380 |
+
| 5.8712 | 9300 | 0.0 | - |
|
381 |
+
| 5.9028 | 9350 | 0.0013 | - |
|
382 |
+
| 5.9343 | 9400 | 0.0001 | - |
|
383 |
+
| 5.9659 | 9450 | 0.0001 | - |
|
384 |
+
| 5.9975 | 9500 | 0.0004 | - |
|
385 |
+
| 6.0290 | 9550 | 0.0 | - |
|
386 |
+
| 6.0606 | 9600 | 0.0 | - |
|
387 |
+
| 6.0922 | 9650 | 0.0 | - |
|
388 |
+
| 6.1237 | 9700 | 0.0 | - |
|
389 |
+
| 6.1553 | 9750 | 0.0 | - |
|
390 |
+
| 6.1869 | 9800 | 0.0 | - |
|
391 |
+
| 6.2184 | 9850 | 0.0013 | - |
|
392 |
+
| 6.25 | 9900 | 0.0006 | - |
|
393 |
+
| 6.2816 | 9950 | 0.0 | - |
|
394 |
+
| 6.3131 | 10000 | 0.0 | - |
|
395 |
+
| 6.3447 | 10050 | 0.0001 | - |
|
396 |
+
| 6.3763 | 10100 | 0.0 | - |
|
397 |
+
| 6.4078 | 10150 | 0.0 | - |
|
398 |
+
| 6.4394 | 10200 | 0.0 | - |
|
399 |
+
| 6.4710 | 10250 | 0.0 | - |
|
400 |
+
| 6.5025 | 10300 | 0.0 | - |
|
401 |
+
| 6.5341 | 10350 | 0.0 | - |
|
402 |
+
| 6.5657 | 10400 | 0.0001 | - |
|
403 |
+
| 6.5972 | 10450 | 0.0 | - |
|
404 |
+
| 6.6288 | 10500 | 0.0002 | - |
|
405 |
+
| 6.6604 | 10550 | 0.0 | - |
|
406 |
+
| 6.6919 | 10600 | 0.0 | - |
|
407 |
+
| 6.7235 | 10650 | 0.0 | - |
|
408 |
+
| 6.7551 | 10700 | 0.0 | - |
|
409 |
+
| 6.7866 | 10750 | 0.0 | - |
|
410 |
+
| 6.8182 | 10800 | 0.0004 | - |
|
411 |
+
| 6.8497 | 10850 | 0.0001 | - |
|
412 |
+
| 6.8813 | 10900 | 0.0 | - |
|
413 |
+
| 6.9129 | 10950 | 0.0 | - |
|
414 |
+
| 6.9444 | 11000 | 0.0 | - |
|
415 |
+
| 6.9760 | 11050 | 0.0001 | - |
|
416 |
+
| 7.0076 | 11100 | 0.0 | - |
|
417 |
+
| 7.0391 | 11150 | 0.0 | - |
|
418 |
+
| 7.0707 | 11200 | 0.0 | - |
|
419 |
+
| 7.1023 | 11250 | 0.0 | - |
|
420 |
+
| 7.1338 | 11300 | 0.0 | - |
|
421 |
+
| 7.1654 | 11350 | 0.0 | - |
|
422 |
+
| 7.1970 | 11400 | 0.0002 | - |
|
423 |
+
| 7.2285 | 11450 | 0.0 | - |
|
424 |
+
| 7.2601 | 11500 | 0.0 | - |
|
425 |
+
| 7.2917 | 11550 | 0.0 | - |
|
426 |
+
| 7.3232 | 11600 | 0.0 | - |
|
427 |
+
| 7.3548 | 11650 | 0.0 | - |
|
428 |
+
| 7.3864 | 11700 | 0.0 | - |
|
429 |
+
| 7.4179 | 11750 | 0.0 | - |
|
430 |
+
| 7.4495 | 11800 | 0.0 | - |
|
431 |
+
| 7.4811 | 11850 | 0.0 | - |
|
432 |
+
| 7.5126 | 11900 | 0.0 | - |
|
433 |
+
| 7.5442 | 11950 | 0.0 | - |
|
434 |
+
| 7.5758 | 12000 | 0.0 | - |
|
435 |
+
| 7.6073 | 12050 | 0.0 | - |
|
436 |
+
| 7.6389 | 12100 | 0.0002 | - |
|
437 |
+
| 7.6705 | 12150 | 0.0 | - |
|
438 |
+
| 7.7020 | 12200 | 0.0001 | - |
|
439 |
+
| 7.7336 | 12250 | 0.0 | - |
|
440 |
+
| 7.7652 | 12300 | 0.0001 | - |
|
441 |
+
| 7.7967 | 12350 | 0.0 | - |
|
442 |
+
| 7.8283 | 12400 | 0.0003 | - |
|
443 |
+
| 7.8598 | 12450 | 0.0 | - |
|
444 |
+
| 7.8914 | 12500 | 0.0 | - |
|
445 |
+
| 7.9230 | 12550 | 0.0 | - |
|
446 |
+
| 7.9545 | 12600 | 0.0001 | - |
|
447 |
+
| 7.9861 | 12650 | 0.0001 | - |
|
448 |
+
| 8.0177 | 12700 | 0.0 | - |
|
449 |
+
| 8.0492 | 12750 | 0.0 | - |
|
450 |
+
| 8.0808 | 12800 | 0.0 | - |
|
451 |
+
| 8.1124 | 12850 | 0.0 | - |
|
452 |
+
| 8.1439 | 12900 | 0.0 | - |
|
453 |
+
| 8.1755 | 12950 | 0.0 | - |
|
454 |
+
| 8.2071 | 13000 | 0.0 | - |
|
455 |
+
| 8.2386 | 13050 | 0.0 | - |
|
456 |
+
| 8.2702 | 13100 | 0.0 | - |
|
457 |
+
| 8.3018 | 13150 | 0.0 | - |
|
458 |
+
| 8.3333 | 13200 | 0.0 | - |
|
459 |
+
| 8.3649 | 13250 | 0.0 | - |
|
460 |
+
| 8.3965 | 13300 | 0.0 | - |
|
461 |
+
| 8.4280 | 13350 | 0.0 | - |
|
462 |
+
| 8.4596 | 13400 | 0.0 | - |
|
463 |
+
| 8.4912 | 13450 | 0.0024 | - |
|
464 |
+
| 8.5227 | 13500 | 0.0 | - |
|
465 |
+
| 8.5543 | 13550 | 0.0001 | - |
|
466 |
+
| 8.5859 | 13600 | 0.0 | - |
|
467 |
+
| 8.6174 | 13650 | 0.0 | - |
|
468 |
+
| 8.6490 | 13700 | 0.0 | - |
|
469 |
+
| 8.6806 | 13750 | 0.0 | - |
|
470 |
+
| 8.7121 | 13800 | 0.0004 | - |
|
471 |
+
| 8.7437 | 13850 | 0.0 | - |
|
472 |
+
| 8.7753 | 13900 | 0.0 | - |
|
473 |
+
| 8.8068 | 13950 | 0.0 | - |
|
474 |
+
| 8.8384 | 14000 | 0.0 | - |
|
475 |
+
| 8.8699 | 14050 | 0.0 | - |
|
476 |
+
| 8.9015 | 14100 | 0.0 | - |
|
477 |
+
| 8.9331 | 14150 | 0.0 | - |
|
478 |
+
| 8.9646 | 14200 | 0.0 | - |
|
479 |
+
| 8.9962 | 14250 | 0.0 | - |
|
480 |
+
| 9.0278 | 14300 | 0.0 | - |
|
481 |
+
| 9.0593 | 14350 | 0.0 | - |
|
482 |
+
| 9.0909 | 14400 | 0.0 | - |
|
483 |
+
| 9.1225 | 14450 | 0.0 | - |
|
484 |
+
| 9.1540 | 14500 | 0.0 | - |
|
485 |
+
| 9.1856 | 14550 | 0.0005 | - |
|
486 |
+
| 9.2172 | 14600 | 0.0 | - |
|
487 |
+
| 9.2487 | 14650 | 0.0 | - |
|
488 |
+
| 9.2803 | 14700 | 0.0 | - |
|
489 |
+
| 9.3119 | 14750 | 0.0 | - |
|
490 |
+
| 9.3434 | 14800 | 0.0 | - |
|
491 |
+
| 9.375 | 14850 | 0.0 | - |
|
492 |
+
| 9.4066 | 14900 | 0.0 | - |
|
493 |
+
| 9.4381 | 14950 | 0.0 | - |
|
494 |
+
| 9.4697 | 15000 | 0.0 | - |
|
495 |
+
| 9.5013 | 15050 | 0.0 | - |
|
496 |
+
| 9.5328 | 15100 | 0.0 | - |
|
497 |
+
| 9.5644 | 15150 | 0.0 | - |
|
498 |
+
| 9.5960 | 15200 | 0.0 | - |
|
499 |
+
| 9.6275 | 15250 | 0.0 | - |
|
500 |
+
| 9.6591 | 15300 | 0.0 | - |
|
501 |
+
| 9.6907 | 15350 | 0.0 | - |
|
502 |
+
| 9.7222 | 15400 | 0.0 | - |
|
503 |
+
| 9.7538 | 15450 | 0.0 | - |
|
504 |
+
| 9.7854 | 15500 | 0.0018 | - |
|
505 |
+
| 9.8169 | 15550 | 0.0001 | - |
|
506 |
+
| 9.8485 | 15600 | 0.0 | - |
|
507 |
+
| 9.8801 | 15650 | 0.0 | - |
|
508 |
+
| 9.9116 | 15700 | 0.0 | - |
|
509 |
+
| 9.9432 | 15750 | 0.0 | - |
|
510 |
+
| 9.9747 | 15800 | 0.0 | - |
|
511 |
+
| 10.0063 | 15850 | 0.0 | - |
|
512 |
+
| 10.0379 | 15900 | 0.0 | - |
|
513 |
+
| 10.0694 | 15950 | 0.0 | - |
|
514 |
+
| 10.1010 | 16000 | 0.0 | - |
|
515 |
+
| 10.1326 | 16050 | 0.0 | - |
|
516 |
+
| 10.1641 | 16100 | 0.0 | - |
|
517 |
+
| 10.1957 | 16150 | 0.0 | - |
|
518 |
+
| 10.2273 | 16200 | 0.0 | - |
|
519 |
+
| 10.2588 | 16250 | 0.0 | - |
|
520 |
+
| 10.2904 | 16300 | 0.0 | - |
|
521 |
+
| 10.3220 | 16350 | 0.0 | - |
|
522 |
+
| 10.3535 | 16400 | 0.0 | - |
|
523 |
+
| 10.3851 | 16450 | 0.0 | - |
|
524 |
+
| 10.4167 | 16500 | 0.0 | - |
|
525 |
+
| 10.4482 | 16550 | 0.0 | - |
|
526 |
+
| 10.4798 | 16600 | 0.0 | - |
|
527 |
+
| 10.5114 | 16650 | 0.0 | - |
|
528 |
+
| 10.5429 | 16700 | 0.0 | - |
|
529 |
+
| 10.5745 | 16750 | 0.0 | - |
|
530 |
+
| 10.6061 | 16800 | 0.0 | - |
|
531 |
+
| 10.6376 | 16850 | 0.0 | - |
|
532 |
+
| 10.6692 | 16900 | 0.0 | - |
|
533 |
+
| 10.7008 | 16950 | 0.0 | - |
|
534 |
+
| 10.7323 | 17000 | 0.0 | - |
|
535 |
+
| 10.7639 | 17050 | 0.0 | - |
|
536 |
+
| 10.7955 | 17100 | 0.0 | - |
|
537 |
+
| 10.8270 | 17150 | 0.0 | - |
|
538 |
+
| 10.8586 | 17200 | 0.0 | - |
|
539 |
+
| 10.8902 | 17250 | 0.0 | - |
|
540 |
+
| 10.9217 | 17300 | 0.0 | - |
|
541 |
+
| 10.9533 | 17350 | 0.0 | - |
|
542 |
+
| 10.9848 | 17400 | 0.0 | - |
|
543 |
+
| 11.0164 | 17450 | 0.0 | - |
|
544 |
+
| 11.0480 | 17500 | 0.0 | - |
|
545 |
+
| 11.0795 | 17550 | 0.0002 | - |
|
546 |
+
| 11.1111 | 17600 | 0.0001 | - |
|
547 |
+
| 11.1427 | 17650 | 0.0 | - |
|
548 |
+
| 11.1742 | 17700 | 0.0 | - |
|
549 |
+
| 11.2058 | 17750 | 0.0 | - |
|
550 |
+
| 11.2374 | 17800 | 0.0 | - |
|
551 |
+
| 11.2689 | 17850 | 0.0 | - |
|
552 |
+
| 11.3005 | 17900 | 0.0 | - |
|
553 |
+
| 11.3321 | 17950 | 0.0 | - |
|
554 |
+
| 11.3636 | 18000 | 0.0 | - |
|
555 |
+
| 11.3952 | 18050 | 0.0 | - |
|
556 |
+
| 11.4268 | 18100 | 0.0 | - |
|
557 |
+
| 11.4583 | 18150 | 0.0 | - |
|
558 |
+
| 11.4899 | 18200 | 0.0 | - |
|
559 |
+
| 11.5215 | 18250 | 0.0 | - |
|
560 |
+
| 11.5530 | 18300 | 0.0 | - |
|
561 |
+
| 11.5846 | 18350 | 0.0 | - |
|
562 |
+
| 11.6162 | 18400 | 0.0 | - |
|
563 |
+
| 11.6477 | 18450 | 0.0 | - |
|
564 |
+
| 11.6793 | 18500 | 0.0 | - |
|
565 |
+
| 11.7109 | 18550 | 0.0 | - |
|
566 |
+
| 11.7424 | 18600 | 0.0 | - |
|
567 |
+
| 11.7740 | 18650 | 0.0 | - |
|
568 |
+
| 11.8056 | 18700 | 0.0 | - |
|
569 |
+
| 11.8371 | 18750 | 0.0 | - |
|
570 |
+
| 11.8687 | 18800 | 0.0 | - |
|
571 |
+
| 11.9003 | 18850 | 0.0 | - |
|
572 |
+
| 11.9318 | 18900 | 0.0 | - |
|
573 |
+
| 11.9634 | 18950 | 0.0 | - |
|
574 |
+
| 11.9949 | 19000 | 0.0 | - |
|
575 |
+
| 12.0265 | 19050 | 0.0 | - |
|
576 |
+
| 12.0581 | 19100 | 0.0 | - |
|
577 |
+
| 12.0896 | 19150 | 0.0 | - |
|
578 |
+
| 12.1212 | 19200 | 0.0 | - |
|
579 |
+
| 12.1528 | 19250 | 0.0 | - |
|
580 |
+
| 12.1843 | 19300 | 0.0 | - |
|
581 |
+
| 12.2159 | 19350 | 0.0 | - |
|
582 |
+
| 12.2475 | 19400 | 0.0 | - |
|
583 |
+
| 12.2790 | 19450 | 0.0 | - |
|
584 |
+
| 12.3106 | 19500 | 0.0 | - |
|
585 |
+
| 12.3422 | 19550 | 0.0 | - |
|
586 |
+
| 12.3737 | 19600 | 0.0 | - |
|
587 |
+
| 12.4053 | 19650 | 0.0 | - |
|
588 |
+
| 12.4369 | 19700 | 0.0 | - |
|
589 |
+
| 12.4684 | 19750 | 0.0 | - |
|
590 |
+
| 12.5 | 19800 | 0.0 | - |
|
591 |
+
| 12.5316 | 19850 | 0.0 | - |
|
592 |
+
| 12.5631 | 19900 | 0.0 | - |
|
593 |
+
| 12.5947 | 19950 | 0.0 | - |
|
594 |
+
| 12.6263 | 20000 | 0.0 | - |
|
595 |
+
| 12.6578 | 20050 | 0.0 | - |
|
596 |
+
| 12.6894 | 20100 | 0.0 | - |
|
597 |
+
| 12.7210 | 20150 | 0.0 | - |
|
598 |
+
| 12.7525 | 20200 | 0.0 | - |
|
599 |
+
| 12.7841 | 20250 | 0.0 | - |
|
600 |
+
| 12.8157 | 20300 | 0.0 | - |
|
601 |
+
| 12.8472 | 20350 | 0.0 | - |
|
602 |
+
| 12.8788 | 20400 | 0.0 | - |
|
603 |
+
| 12.9104 | 20450 | 0.0 | - |
|
604 |
+
| 12.9419 | 20500 | 0.0 | - |
|
605 |
+
| 12.9735 | 20550 | 0.0 | - |
|
606 |
+
| 13.0051 | 20600 | 0.0 | - |
|
607 |
+
| 13.0366 | 20650 | 0.0 | - |
|
608 |
+
| 13.0682 | 20700 | 0.0 | - |
|
609 |
+
| 13.0997 | 20750 | 0.0 | - |
|
610 |
+
| 13.1313 | 20800 | 0.0 | - |
|
611 |
+
| 13.1629 | 20850 | 0.0 | - |
|
612 |
+
| 13.1944 | 20900 | 0.0 | - |
|
613 |
+
| 13.2260 | 20950 | 0.0 | - |
|
614 |
+
| 13.2576 | 21000 | 0.0 | - |
|
615 |
+
| 13.2891 | 21050 | 0.0 | - |
|
616 |
+
| 13.3207 | 21100 | 0.0 | - |
|
617 |
+
| 13.3523 | 21150 | 0.0 | - |
|
618 |
+
| 13.3838 | 21200 | 0.0 | - |
|
619 |
+
| 13.4154 | 21250 | 0.0 | - |
|
620 |
+
| 13.4470 | 21300 | 0.0 | - |
|
621 |
+
| 13.4785 | 21350 | 0.0 | - |
|
622 |
+
| 13.5101 | 21400 | 0.0 | - |
|
623 |
+
| 13.5417 | 21450 | 0.0 | - |
|
624 |
+
| 13.5732 | 21500 | 0.0 | - |
|
625 |
+
| 13.6048 | 21550 | 0.0 | - |
|
626 |
+
| 13.6364 | 21600 | 0.0 | - |
|
627 |
+
| 13.6679 | 21650 | 0.0001 | - |
|
628 |
+
| 13.6995 | 21700 | 0.0 | - |
|
629 |
+
| 13.7311 | 21750 | 0.0 | - |
|
630 |
+
| 13.7626 | 21800 | 0.0 | - |
|
631 |
+
| 13.7942 | 21850 | 0.0 | - |
|
632 |
+
| 13.8258 | 21900 | 0.0 | - |
|
633 |
+
| 13.8573 | 21950 | 0.0 | - |
|
634 |
+
| 13.8889 | 22000 | 0.0 | - |
|
635 |
+
| 13.9205 | 22050 | 0.0 | - |
|
636 |
+
| 13.9520 | 22100 | 0.0 | - |
|
637 |
+
| 13.9836 | 22150 | 0.0 | - |
|
638 |
+
| 14.0152 | 22200 | 0.0 | - |
|
639 |
+
| 14.0467 | 22250 | 0.0002 | - |
|
640 |
+
| 14.0783 | 22300 | 0.0 | - |
|
641 |
+
| 14.1098 | 22350 | 0.0 | - |
|
642 |
+
| 14.1414 | 22400 | 0.0 | - |
|
643 |
+
| 14.1730 | 22450 | 0.0 | - |
|
644 |
+
| 14.2045 | 22500 | 0.0 | - |
|
645 |
+
| 14.2361 | 22550 | 0.0 | - |
|
646 |
+
| 14.2677 | 22600 | 0.0 | - |
|
647 |
+
| 14.2992 | 22650 | 0.0 | - |
|
648 |
+
| 14.3308 | 22700 | 0.0 | - |
|
649 |
+
| 14.3624 | 22750 | 0.0 | - |
|
650 |
+
| 14.3939 | 22800 | 0.0 | - |
|
651 |
+
| 14.4255 | 22850 | 0.0 | - |
|
652 |
+
| 14.4571 | 22900 | 0.0 | - |
|
653 |
+
| 14.4886 | 22950 | 0.0 | - |
|
654 |
+
| 14.5202 | 23000 | 0.0 | - |
|
655 |
+
| 14.5518 | 23050 | 0.0 | - |
|
656 |
+
| 14.5833 | 23100 | 0.0 | - |
|
657 |
+
| 14.6149 | 23150 | 0.0 | - |
|
658 |
+
| 14.6465 | 23200 | 0.0 | - |
|
659 |
+
| 14.6780 | 23250 | 0.0 | - |
|
660 |
+
| 14.7096 | 23300 | 0.0 | - |
|
661 |
+
| 14.7412 | 23350 | 0.0 | - |
|
662 |
+
| 14.7727 | 23400 | 0.0 | - |
|
663 |
+
| 14.8043 | 23450 | 0.0 | - |
|
664 |
+
| 14.8359 | 23500 | 0.0 | - |
|
665 |
+
| 14.8674 | 23550 | 0.0 | - |
|
666 |
+
| 14.8990 | 23600 | 0.0 | - |
|
667 |
+
| 14.9306 | 23650 | 0.0 | - |
|
668 |
+
| 14.9621 | 23700 | 0.0 | - |
|
669 |
+
| 14.9937 | 23750 | 0.0 | - |
|
670 |
+
| 15.0253 | 23800 | 0.0 | - |
|
671 |
+
| 15.0568 | 23850 | 0.0 | - |
|
672 |
+
| 15.0884 | 23900 | 0.0 | - |
|
673 |
+
| 15.1199 | 23950 | 0.0 | - |
|
674 |
+
| 15.1515 | 24000 | 0.0 | - |
|
675 |
+
| 15.1831 | 24050 | 0.0 | - |
|
676 |
+
| 15.2146 | 24100 | 0.0 | - |
|
677 |
+
| 15.2462 | 24150 | 0.0 | - |
|
678 |
+
| 15.2778 | 24200 | 0.0 | - |
|
679 |
+
| 15.3093 | 24250 | 0.0 | - |
|
680 |
+
| 15.3409 | 24300 | 0.0 | - |
|
681 |
+
| 15.3725 | 24350 | 0.0 | - |
|
682 |
+
| 15.4040 | 24400 | 0.0 | - |
|
683 |
+
| 15.4356 | 24450 | 0.0 | - |
|
684 |
+
| 15.4672 | 24500 | 0.0 | - |
|
685 |
+
| 15.4987 | 24550 | 0.0 | - |
|
686 |
+
| 15.5303 | 24600 | 0.0 | - |
|
687 |
+
| 15.5619 | 24650 | 0.0 | - |
|
688 |
+
| 15.5934 | 24700 | 0.0 | - |
|
689 |
+
| 15.625 | 24750 | 0.0 | - |
|
690 |
+
| 15.6566 | 24800 | 0.0001 | - |
|
691 |
+
| 15.6881 | 24850 | 0.0 | - |
|
692 |
+
| 15.7197 | 24900 | 0.0 | - |
|
693 |
+
| 15.7513 | 24950 | 0.0 | - |
|
694 |
+
| 15.7828 | 25000 | 0.0 | - |
|
695 |
+
| 15.8144 | 25050 | 0.0 | - |
|
696 |
+
| 15.8460 | 25100 | 0.0 | - |
|
697 |
+
| 15.8775 | 25150 | 0.0 | - |
|
698 |
+
| 15.9091 | 25200 | 0.0 | - |
|
699 |
+
| 15.9407 | 25250 | 0.0 | - |
|
700 |
+
| 15.9722 | 25300 | 0.0 | - |
|
701 |
+
| 16.0038 | 25350 | 0.0 | - |
|
702 |
+
| 16.0354 | 25400 | 0.0 | - |
|
703 |
+
| 16.0669 | 25450 | 0.0 | - |
|
704 |
+
| 16.0985 | 25500 | 0.0 | - |
|
705 |
+
| 16.1301 | 25550 | 0.0 | - |
|
706 |
+
| 16.1616 | 25600 | 0.0 | - |
|
707 |
+
| 16.1932 | 25650 | 0.0 | - |
|
708 |
+
| 16.2247 | 25700 | 0.0 | - |
|
709 |
+
| 16.2563 | 25750 | 0.0 | - |
|
710 |
+
| 16.2879 | 25800 | 0.0 | - |
|
711 |
+
| 16.3194 | 25850 | 0.0 | - |
|
712 |
+
| 16.3510 | 25900 | 0.0 | - |
|
713 |
+
| 16.3826 | 25950 | 0.0 | - |
|
714 |
+
| 16.4141 | 26000 | 0.0 | - |
|
715 |
+
| 16.4457 | 26050 | 0.0 | - |
|
716 |
+
| 16.4773 | 26100 | 0.0 | - |
|
717 |
+
| 16.5088 | 26150 | 0.0 | - |
|
718 |
+
| 16.5404 | 26200 | 0.0 | - |
|
719 |
+
| 16.5720 | 26250 | 0.0 | - |
|
720 |
+
| 16.6035 | 26300 | 0.0 | - |
|
721 |
+
| 16.6351 | 26350 | 0.0 | - |
|
722 |
+
| 16.6667 | 26400 | 0.0 | - |
|
723 |
+
| 16.6982 | 26450 | 0.0 | - |
|
724 |
+
| 16.7298 | 26500 | 0.0 | - |
|
725 |
+
| 16.7614 | 26550 | 0.0 | - |
|
726 |
+
| 16.7929 | 26600 | 0.0 | - |
|
727 |
+
| 16.8245 | 26650 | 0.0 | - |
|
728 |
+
| 16.8561 | 26700 | 0.0 | - |
|
729 |
+
| 16.8876 | 26750 | 0.0 | - |
|
730 |
+
| 16.9192 | 26800 | 0.0 | - |
|
731 |
+
| 16.9508 | 26850 | 0.0 | - |
|
732 |
+
| 16.9823 | 26900 | 0.0 | - |
|
733 |
+
| 17.0139 | 26950 | 0.0 | - |
|
734 |
+
| 17.0455 | 27000 | 0.0 | - |
|
735 |
+
| 17.0770 | 27050 | 0.0 | - |
|
736 |
+
| 17.1086 | 27100 | 0.0 | - |
|
737 |
+
| 17.1402 | 27150 | 0.0 | - |
|
738 |
+
| 17.1717 | 27200 | 0.0 | - |
|
739 |
+
| 17.2033 | 27250 | 0.0 | - |
|
740 |
+
| 17.2348 | 27300 | 0.0 | - |
|
741 |
+
| 17.2664 | 27350 | 0.0 | - |
|
742 |
+
| 17.2980 | 27400 | 0.0 | - |
|
743 |
+
| 17.3295 | 27450 | 0.0 | - |
|
744 |
+
| 17.3611 | 27500 | 0.0 | - |
|
745 |
+
| 17.3927 | 27550 | 0.0 | - |
|
746 |
+
| 17.4242 | 27600 | 0.0 | - |
|
747 |
+
| 17.4558 | 27650 | 0.0 | - |
|
748 |
+
| 17.4874 | 27700 | 0.0 | - |
|
749 |
+
| 17.5189 | 27750 | 0.0 | - |
|
750 |
+
| 17.5505 | 27800 | 0.0 | - |
|
751 |
+
| 17.5821 | 27850 | 0.0 | - |
|
752 |
+
| 17.6136 | 27900 | 0.0 | - |
|
753 |
+
| 17.6452 | 27950 | 0.0 | - |
|
754 |
+
| 17.6768 | 28000 | 0.0 | - |
|
755 |
+
| 17.7083 | 28050 | 0.0 | - |
|
756 |
+
| 17.7399 | 28100 | 0.0 | - |
|
757 |
+
| 17.7715 | 28150 | 0.0 | - |
|
758 |
+
| 17.8030 | 28200 | 0.0 | - |
|
759 |
+
| 17.8346 | 28250 | 0.0 | - |
|
760 |
+
| 17.8662 | 28300 | 0.0 | - |
|
761 |
+
| 17.8977 | 28350 | 0.0 | - |
|
762 |
+
| 17.9293 | 28400 | 0.0 | - |
|
763 |
+
| 17.9609 | 28450 | 0.0 | - |
|
764 |
+
| 17.9924 | 28500 | 0.0 | - |
|
765 |
+
| 18.0240 | 28550 | 0.0 | - |
|
766 |
+
| 18.0556 | 28600 | 0.0 | - |
|
767 |
+
| 18.0871 | 28650 | 0.0 | - |
|
768 |
+
| 18.1187 | 28700 | 0.0 | - |
|
769 |
+
| 18.1503 | 28750 | 0.0 | - |
|
770 |
+
| 18.1818 | 28800 | 0.0 | - |
|
771 |
+
| 18.2134 | 28850 | 0.0 | - |
|
772 |
+
| 18.2449 | 28900 | 0.0 | - |
|
773 |
+
| 18.2765 | 28950 | 0.0 | - |
|
774 |
+
| 18.3081 | 29000 | 0.0 | - |
|
775 |
+
| 18.3396 | 29050 | 0.0 | - |
|
776 |
+
| 18.3712 | 29100 | 0.0 | - |
|
777 |
+
| 18.4028 | 29150 | 0.0 | - |
|
778 |
+
| 18.4343 | 29200 | 0.0 | - |
|
779 |
+
| 18.4659 | 29250 | 0.0 | - |
|
780 |
+
| 18.4975 | 29300 | 0.0 | - |
|
781 |
+
| 18.5290 | 29350 | 0.0 | - |
|
782 |
+
| 18.5606 | 29400 | 0.0 | - |
|
783 |
+
| 18.5922 | 29450 | 0.0 | - |
|
784 |
+
| 18.6237 | 29500 | 0.0 | - |
|
785 |
+
| 18.6553 | 29550 | 0.0 | - |
|
786 |
+
| 18.6869 | 29600 | 0.0 | - |
|
787 |
+
| 18.7184 | 29650 | 0.0 | - |
|
788 |
+
| 18.75 | 29700 | 0.0 | - |
|
789 |
+
| 18.7816 | 29750 | 0.0 | - |
|
790 |
+
| 18.8131 | 29800 | 0.0 | - |
|
791 |
+
| 18.8447 | 29850 | 0.0 | - |
|
792 |
+
| 18.8763 | 29900 | 0.0 | - |
|
793 |
+
| 18.9078 | 29950 | 0.0 | - |
|
794 |
+
| 18.9394 | 30000 | 0.0 | - |
|
795 |
+
| 18.9710 | 30050 | 0.0 | - |
|
796 |
+
| 19.0025 | 30100 | 0.0 | - |
|
797 |
+
| 19.0341 | 30150 | 0.0 | - |
|
798 |
+
| 19.0657 | 30200 | 0.0 | - |
|
799 |
+
| 19.0972 | 30250 | 0.0 | - |
|
800 |
+
| 19.1288 | 30300 | 0.0 | - |
|
801 |
+
| 19.1604 | 30350 | 0.0 | - |
|
802 |
+
| 19.1919 | 30400 | 0.0 | - |
|
803 |
+
| 19.2235 | 30450 | 0.0 | - |
|
804 |
+
| 19.2551 | 30500 | 0.0 | - |
|
805 |
+
| 19.2866 | 30550 | 0.0 | - |
|
806 |
+
| 19.3182 | 30600 | 0.0 | - |
|
807 |
+
| 19.3497 | 30650 | 0.0 | - |
|
808 |
+
| 19.3813 | 30700 | 0.0 | - |
|
809 |
+
| 19.4129 | 30750 | 0.0 | - |
|
810 |
+
| 19.4444 | 30800 | 0.0 | - |
|
811 |
+
| 19.4760 | 30850 | 0.0 | - |
|
812 |
+
| 19.5076 | 30900 | 0.0 | - |
|
813 |
+
| 19.5391 | 30950 | 0.0 | - |
|
814 |
+
| 19.5707 | 31000 | 0.0 | - |
|
815 |
+
| 19.6023 | 31050 | 0.0 | - |
|
816 |
+
| 19.6338 | 31100 | 0.0 | - |
|
817 |
+
| 19.6654 | 31150 | 0.0 | - |
|
818 |
+
| 19.6970 | 31200 | 0.0 | - |
|
819 |
+
| 19.7285 | 31250 | 0.0 | - |
|
820 |
+
| 19.7601 | 31300 | 0.0 | - |
|
821 |
+
| 19.7917 | 31350 | 0.0 | - |
|
822 |
+
| 19.8232 | 31400 | 0.0 | - |
|
823 |
+
| 19.8548 | 31450 | 0.0 | - |
|
824 |
+
| 19.8864 | 31500 | 0.0 | - |
|
825 |
+
| 19.9179 | 31550 | 0.0 | - |
|
826 |
+
| 19.9495 | 31600 | 0.0 | - |
|
827 |
+
| 19.9811 | 31650 | 0.0 | - |
|
828 |
+
|
829 |
+
### Framework Versions
|
830 |
+
- Python: 3.10.12
|
831 |
+
- SetFit: 1.1.0.dev0
|
832 |
+
- Sentence Transformers: 3.1.1
|
833 |
+
- Transformers: 4.46.1
|
834 |
+
- PyTorch: 2.4.0+cu121
|
835 |
+
- Datasets: 2.20.0
|
836 |
+
- Tokenizers: 0.20.0
|
837 |
+
|
838 |
+
## Citation
|
839 |
+
|
840 |
+
### BibTeX
|
841 |
+
```bibtex
|
842 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
843 |
+
doi = {10.48550/ARXIV.2209.11055},
|
844 |
+
url = {https://arxiv.org/abs/2209.11055},
|
845 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
846 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
847 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
848 |
+
publisher = {arXiv},
|
849 |
+
year = {2022},
|
850 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
851 |
+
}
|
852 |
+
```
|
853 |
+
|
854 |
+
<!--
|
855 |
+
## Glossary
|
856 |
+
|
857 |
+
*Clearly define terms in order to be accessible across audiences.*
|
858 |
+
-->
|
859 |
+
|
860 |
+
<!--
|
861 |
+
## Model Card Authors
|
862 |
+
|
863 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
864 |
+
-->
|
865 |
+
|
866 |
+
<!--
|
867 |
+
## Model Card Contact
|
868 |
+
|
869 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
870 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "mini1013/master_domain",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"gradient_checkpointing": false,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"layer_norm_eps": 1e-05,
|
17 |
+
"max_position_embeddings": 514,
|
18 |
+
"model_type": "roberta",
|
19 |
+
"num_attention_heads": 12,
|
20 |
+
"num_hidden_layers": 12,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"tokenizer_class": "BertTokenizer",
|
24 |
+
"torch_dtype": "float32",
|
25 |
+
"transformers_version": "4.46.1",
|
26 |
+
"type_vocab_size": 1,
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 32000
|
29 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.1.1",
|
4 |
+
"transformers": "4.46.1",
|
5 |
+
"pytorch": "2.4.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"labels": null,
|
3 |
+
"normalize_embeddings": false
|
4 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:604d5ae61274a83a3ebd7e23c193d2e77b980850d50e891744f930ea80d4940f
|
3 |
+
size 442494816
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d3f2c177052a1fb0cf93f058d2f5042211695a923a3c2a9cd21386469d348e43
|
3 |
+
size 136327
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "[CLS]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "[SEP]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "[MASK]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "[PAD]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "[SEP]",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[CLS]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[PAD]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[SEP]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[UNK]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "[CLS]",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"cls_token": "[CLS]",
|
47 |
+
"do_basic_tokenize": true,
|
48 |
+
"do_lower_case": false,
|
49 |
+
"eos_token": "[SEP]",
|
50 |
+
"mask_token": "[MASK]",
|
51 |
+
"max_length": 512,
|
52 |
+
"model_max_length": 512,
|
53 |
+
"never_split": null,
|
54 |
+
"pad_to_multiple_of": null,
|
55 |
+
"pad_token": "[PAD]",
|
56 |
+
"pad_token_type_id": 0,
|
57 |
+
"padding_side": "right",
|
58 |
+
"sep_token": "[SEP]",
|
59 |
+
"stride": 0,
|
60 |
+
"strip_accents": null,
|
61 |
+
"tokenize_chinese_chars": true,
|
62 |
+
"tokenizer_class": "BertTokenizer",
|
63 |
+
"truncation_side": "right",
|
64 |
+
"truncation_strategy": "longest_first",
|
65 |
+
"unk_token": "[UNK]"
|
66 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|