mini1013 commited on
Commit
2ff3f59
·
verified ·
1 Parent(s): 11f4e1d

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,392 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: klue/roberta-base
3
+ library_name: setfit
4
+ metrics:
5
+ - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: 듄 포 맨 오 드 뚜왈렛 (100ml) LotteOn > 뷰티 > 향수 > 남성향수 LotteOn > 뷰티 > 향수 > 남성향수
14
+ - text: 오랑쥬 상긴느 200ml (증정) 울랑 앙피니 30ml_마젠타 LotteOn > 뷰티 > 베이스메이크업 > 향수/디퓨저 > 공용향수
15
+ LotteOn > 뷰티 > 명품화장품 > 향수/디퓨저 > 공용향수
16
+ - text: 디올 블루밍 부케 롤러 펄 오 드 뚜왈렛 20ml LotteOn > 뷰티 > 향수 > 여성향수 LotteOn > 뷰티 > 향수 >
17
+ 여성향수
18
+ - text: 포멜로 파라디 30ml +1.7ml 1종 마젠타 LOREAL > DepartmentLotteOn > 아틀리에 코롱 > Branded
19
+ > 아틀리에 코롱 DepartmentLotteOn > 뷰티 > 향수 > 향수세트
20
+ - text: 베르가모트 솔레이 200ml (증정) 울랑 앙피니 30ml_블랙 LOREAL > DepartmentLotteOn > 아틀리에 코롱 >
21
+ Branded > 아틀리에 코롱 LOREAL > DepartmentLotteOn > 아틀리에 코롱 > Branded > 아틀리에 코롱
22
+ inference: true
23
+ model-index:
24
+ - name: SetFit with klue/roberta-base
25
+ results:
26
+ - task:
27
+ type: text-classification
28
+ name: Text Classification
29
+ dataset:
30
+ name: Unknown
31
+ type: unknown
32
+ split: test
33
+ metrics:
34
+ - type: accuracy
35
+ value: 0.5334819796768769
36
+ name: Accuracy
37
+ ---
38
+
39
+ # SetFit with klue/roberta-base
40
+
41
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [klue/roberta-base](https://huggingface.co/klue/roberta-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
42
+
43
+ The model has been trained using an efficient few-shot learning technique that involves:
44
+
45
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
46
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
47
+
48
+ ## Model Details
49
+
50
+ ### Model Description
51
+ - **Model Type:** SetFit
52
+ - **Sentence Transformer body:** [klue/roberta-base](https://huggingface.co/klue/roberta-base)
53
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
54
+ - **Maximum Sequence Length:** 512 tokens
55
+ - **Number of Classes:** 4 classes
56
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
57
+ <!-- - **Language:** Unknown -->
58
+ <!-- - **License:** Unknown -->
59
+
60
+ ### Model Sources
61
+
62
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
63
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
64
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
65
+
66
+ ### Model Labels
67
+ | Label | Examples |
68
+ |:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
69
+ | 3 | <ul><li>'마타바 석고방향제 만들기 diy 재료모음 05_석고전용색소_01_석고전용색소50ml_노랑 (#M)11st>과자/간식>초콜릿>초콜릿DIY>도구 기타 11st > 식품 > 과자/간식 > 초콜릿 > 초콜릿DIY'</li><li>'A 시그니처 디퓨저 1+1 프로모션 네롤리바질_피오니 LotteOn > 생활/건강 > 세제/방향/살충 > 방향제 LotteOn > 생활/건강 > 세제/방향/살충 > 방향제'</li><li>'마타바 석고방향제 만들기 diy 재료모음 01_스위스G향료100ml_멋스럽고세련된향기_69_인투유 (#M)11st>과자/간식>초콜릿>초콜릿DIY>도구 기타 11st > 식품 > 과자/간식 > 초콜릿 > 초콜릿DIY'</li></ul> |
70
+ | 0 | <ul><li>'아틀리에 코롱 - 자스민 안젤리크 코롱 압솔뤼 스프레이 100ml/3.3oz LOREAL > Ssg > 아틀리에 코롱 > Branded > 아틀리에 코롱 LOREAL > Ssg > 아틀리에 코롱 > Branded > 아틀���에 코롱'</li><li>'베티베르 파탈 200ml (증정) 아이리스 리벨 30ml LOREAL > DepartmentLotteOn > 아틀리에 코롱 > Branded > 아틀리에 코롱 LOREAL > DepartmentLotteOn > 아틀리에 코롱 > Branded > 아틀리에 코롱'</li><li>'포멜로 파라디 30ml +1.7ml 1종 코랄 LOREAL > DepartmentLotteOn > 아틀리에 코롱 > Branded > 아틀리에 코롱 DepartmentLotteOn > 뷰티 > 향수 > 향수세트'</li></ul> |
71
+ | 2 | <ul><li>'베르가모트 솔레이 200ml (증정) 러브 오스만투스 30ml_오랑쥬 LOREAL > DepartmentLotteOn > 아틀리에 코롱 > Branded > 아틀리에 코롱 LOREAL > DepartmentLotteOn > 아틀리에 코롱 > Branded > 아틀리에 코롱'</li><li>'포멜로 파라디 100ml 코랄 LOREAL > DepartmentLotteOn > 아틀리에 코롱 > Branded > 포멜로 파라디 LOREAL > DepartmentLotteOn > 아틀리에 코롱 > Branded > 포멜로 파라디'</li><li>'베르가모트 솔레이 200ml (증정) 클레망틴 캘리포니아 30ml_마젠타 LOREAL > DepartmentLotteOn > 아틀리에 코롱 > Branded > 아틀리에 코롱 LOREAL > DepartmentLotteOn > 아틀리에 코롱 > Branded > 아틀리에 코롱'</li></ul> |
72
+ | 1 | <ul><li>'불가리 뿌르 옴므 익스트림 EDT 50ml LotteOn > 뷰티 > 향수 > 남성향수 LotteOn > 뷰티 > 향수 > 남성향수'</li><li>'조르지오 아르마니 아쿠아 디 지오 옴므 세트 EDT 100ml + 트레블 15ml (#M)위메프 > 뷰티 > 명품화장품 > 메이크업 > 립메이크업 위메프 > 뷰티 > 명품화장품 > 스킨케어'</li><li>'불가리 뿌르옴므 익스트림 100ml 50ml 30ml 백화점정품 50ml 백화점정품 홈>화장품/미용>향수>남성향수;(#M)홈>남자향수>불가리 Naverstore > 화장품/미용 > 향수 > 남성향수'</li></ul> |
73
+
74
+ ## Evaluation
75
+
76
+ ### Metrics
77
+ | Label | Accuracy |
78
+ |:--------|:---------|
79
+ | **all** | 0.5335 |
80
+
81
+ ## Uses
82
+
83
+ ### Direct Use for Inference
84
+
85
+ First install the SetFit library:
86
+
87
+ ```bash
88
+ pip install setfit
89
+ ```
90
+
91
+ Then you can load this model and run inference.
92
+
93
+ ```python
94
+ from setfit import SetFitModel
95
+
96
+ # Download from the 🤗 Hub
97
+ model = SetFitModel.from_pretrained("mini1013/master_item_top_bt11")
98
+ # Run inference
99
+ preds = model("듄 포 맨 오 드 뚜왈렛 (100ml) LotteOn > 뷰티 > 향수 > 남성향수 LotteOn > 뷰티 > 향수 > 남성향수")
100
+ ```
101
+
102
+ <!--
103
+ ### Downstream Use
104
+
105
+ *List how someone could finetune this model on their own dataset.*
106
+ -->
107
+
108
+ <!--
109
+ ### Out-of-Scope Use
110
+
111
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
112
+ -->
113
+
114
+ <!--
115
+ ## Bias, Risks and Limitations
116
+
117
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
118
+ -->
119
+
120
+ <!--
121
+ ### Recommendations
122
+
123
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
124
+ -->
125
+
126
+ ## Training Details
127
+
128
+ ### Training Set Metrics
129
+ | Training set | Min | Median | Max |
130
+ |:-------------|:----|:-------|:----|
131
+ | Word count | 11 | 26.41 | 45 |
132
+
133
+ | Label | Training Sample Count |
134
+ |:------|:----------------------|
135
+ | 0 | 50 |
136
+ | 1 | 50 |
137
+ | 2 | 50 |
138
+ | 3 | 50 |
139
+
140
+ ### Training Hyperparameters
141
+ - batch_size: (64, 64)
142
+ - num_epochs: (30, 30)
143
+ - max_steps: -1
144
+ - sampling_strategy: oversampling
145
+ - num_iterations: 100
146
+ - body_learning_rate: (2e-05, 1e-05)
147
+ - head_learning_rate: 0.01
148
+ - loss: CosineSimilarityLoss
149
+ - distance_metric: cosine_distance
150
+ - margin: 0.25
151
+ - end_to_end: False
152
+ - use_amp: False
153
+ - warmup_proportion: 0.1
154
+ - l2_weight: 0.01
155
+ - seed: 42
156
+ - eval_max_steps: -1
157
+ - load_best_model_at_end: False
158
+
159
+ ### Training Results
160
+ | Epoch | Step | Training Loss | Validation Loss |
161
+ |:-------:|:----:|:-------------:|:---------------:|
162
+ | 0.0032 | 1 | 0.395 | - |
163
+ | 0.1597 | 50 | 0.3286 | - |
164
+ | 0.3195 | 100 | 0.2663 | - |
165
+ | 0.4792 | 150 | 0.2215 | - |
166
+ | 0.6390 | 200 | 0.1928 | - |
167
+ | 0.7987 | 250 | 0.081 | - |
168
+ | 0.9585 | 300 | 0.0147 | - |
169
+ | 1.1182 | 350 | 0.0027 | - |
170
+ | 1.2780 | 400 | 0.0008 | - |
171
+ | 1.4377 | 450 | 0.0004 | - |
172
+ | 1.5974 | 500 | 0.0006 | - |
173
+ | 1.7572 | 550 | 0.0003 | - |
174
+ | 1.9169 | 600 | 0.0001 | - |
175
+ | 2.0767 | 650 | 0.0001 | - |
176
+ | 2.2364 | 700 | 0.0001 | - |
177
+ | 2.3962 | 750 | 0.0001 | - |
178
+ | 2.5559 | 800 | 0.0 | - |
179
+ | 2.7157 | 850 | 0.0 | - |
180
+ | 2.8754 | 900 | 0.0 | - |
181
+ | 3.0351 | 950 | 0.0 | - |
182
+ | 3.1949 | 1000 | 0.0 | - |
183
+ | 3.3546 | 1050 | 0.0 | - |
184
+ | 3.5144 | 1100 | 0.0 | - |
185
+ | 3.6741 | 1150 | 0.0 | - |
186
+ | 3.8339 | 1200 | 0.0 | - |
187
+ | 3.9936 | 1250 | 0.0 | - |
188
+ | 4.1534 | 1300 | 0.0 | - |
189
+ | 4.3131 | 1350 | 0.0 | - |
190
+ | 4.4728 | 1400 | 0.0 | - |
191
+ | 4.6326 | 1450 | 0.0 | - |
192
+ | 4.7923 | 1500 | 0.0 | - |
193
+ | 4.9521 | 1550 | 0.0 | - |
194
+ | 5.1118 | 1600 | 0.0 | - |
195
+ | 5.2716 | 1650 | 0.0 | - |
196
+ | 5.4313 | 1700 | 0.0 | - |
197
+ | 5.5911 | 1750 | 0.0 | - |
198
+ | 5.7508 | 1800 | 0.0 | - |
199
+ | 5.9105 | 1850 | 0.0 | - |
200
+ | 6.0703 | 1900 | 0.0 | - |
201
+ | 6.2300 | 1950 | 0.0 | - |
202
+ | 6.3898 | 2000 | 0.0 | - |
203
+ | 6.5495 | 2050 | 0.0 | - |
204
+ | 6.7093 | 2100 | 0.0 | - |
205
+ | 6.8690 | 2150 | 0.0 | - |
206
+ | 7.0288 | 2200 | 0.0 | - |
207
+ | 7.1885 | 2250 | 0.0 | - |
208
+ | 7.3482 | 2300 | 0.0 | - |
209
+ | 7.5080 | 2350 | 0.0 | - |
210
+ | 7.6677 | 2400 | 0.0 | - |
211
+ | 7.8275 | 2450 | 0.0 | - |
212
+ | 7.9872 | 2500 | 0.0 | - |
213
+ | 8.1470 | 2550 | 0.0 | - |
214
+ | 8.3067 | 2600 | 0.0 | - |
215
+ | 8.4665 | 2650 | 0.0 | - |
216
+ | 8.6262 | 2700 | 0.0 | - |
217
+ | 8.7859 | 2750 | 0.0 | - |
218
+ | 8.9457 | 2800 | 0.0 | - |
219
+ | 9.1054 | 2850 | 0.0 | - |
220
+ | 9.2652 | 2900 | 0.0 | - |
221
+ | 9.4249 | 2950 | 0.0 | - |
222
+ | 9.5847 | 3000 | 0.0 | - |
223
+ | 9.7444 | 3050 | 0.0 | - |
224
+ | 9.9042 | 3100 | 0.0 | - |
225
+ | 10.0639 | 3150 | 0.0 | - |
226
+ | 10.2236 | 3200 | 0.0 | - |
227
+ | 10.3834 | 3250 | 0.0 | - |
228
+ | 10.5431 | 3300 | 0.0 | - |
229
+ | 10.7029 | 3350 | 0.0 | - |
230
+ | 10.8626 | 3400 | 0.0 | - |
231
+ | 11.0224 | 3450 | 0.0 | - |
232
+ | 11.1821 | 3500 | 0.0 | - |
233
+ | 11.3419 | 3550 | 0.0 | - |
234
+ | 11.5016 | 3600 | 0.0 | - |
235
+ | 11.6613 | 3650 | 0.0 | - |
236
+ | 11.8211 | 3700 | 0.0 | - |
237
+ | 11.9808 | 3750 | 0.0 | - |
238
+ | 12.1406 | 3800 | 0.0 | - |
239
+ | 12.3003 | 3850 | 0.0 | - |
240
+ | 12.4601 | 3900 | 0.0 | - |
241
+ | 12.6198 | 3950 | 0.0 | - |
242
+ | 12.7796 | 4000 | 0.0 | - |
243
+ | 12.9393 | 4050 | 0.0 | - |
244
+ | 13.0990 | 4100 | 0.0 | - |
245
+ | 13.2588 | 4150 | 0.0 | - |
246
+ | 13.4185 | 4200 | 0.0 | - |
247
+ | 13.5783 | 4250 | 0.0 | - |
248
+ | 13.7380 | 4300 | 0.0 | - |
249
+ | 13.8978 | 4350 | 0.0 | - |
250
+ | 14.0575 | 4400 | 0.0 | - |
251
+ | 14.2173 | 4450 | 0.0 | - |
252
+ | 14.3770 | 4500 | 0.0 | - |
253
+ | 14.5367 | 4550 | 0.0 | - |
254
+ | 14.6965 | 4600 | 0.0 | - |
255
+ | 14.8562 | 4650 | 0.0 | - |
256
+ | 15.0160 | 4700 | 0.0 | - |
257
+ | 15.1757 | 4750 | 0.0 | - |
258
+ | 15.3355 | 4800 | 0.0 | - |
259
+ | 15.4952 | 4850 | 0.0 | - |
260
+ | 15.6550 | 4900 | 0.0 | - |
261
+ | 15.8147 | 4950 | 0.0 | - |
262
+ | 15.9744 | 5000 | 0.0 | - |
263
+ | 16.1342 | 5050 | 0.0 | - |
264
+ | 16.2939 | 5100 | 0.0 | - |
265
+ | 16.4537 | 5150 | 0.0 | - |
266
+ | 16.6134 | 5200 | 0.0 | - |
267
+ | 16.7732 | 5250 | 0.0 | - |
268
+ | 16.9329 | 5300 | 0.0 | - |
269
+ | 17.0927 | 5350 | 0.0 | - |
270
+ | 17.2524 | 5400 | 0.0 | - |
271
+ | 17.4121 | 5450 | 0.0 | - |
272
+ | 17.5719 | 5500 | 0.0 | - |
273
+ | 17.7316 | 5550 | 0.0 | - |
274
+ | 17.8914 | 5600 | 0.0 | - |
275
+ | 18.0511 | 5650 | 0.0 | - |
276
+ | 18.2109 | 5700 | 0.0 | - |
277
+ | 18.3706 | 5750 | 0.0 | - |
278
+ | 18.5304 | 5800 | 0.0 | - |
279
+ | 18.6901 | 5850 | 0.0 | - |
280
+ | 18.8498 | 5900 | 0.0 | - |
281
+ | 19.0096 | 5950 | 0.0 | - |
282
+ | 19.1693 | 6000 | 0.0 | - |
283
+ | 19.3291 | 6050 | 0.0 | - |
284
+ | 19.4888 | 6100 | 0.0 | - |
285
+ | 19.6486 | 6150 | 0.0 | - |
286
+ | 19.8083 | 6200 | 0.0 | - |
287
+ | 19.9681 | 6250 | 0.0 | - |
288
+ | 20.1278 | 6300 | 0.0 | - |
289
+ | 20.2875 | 6350 | 0.0 | - |
290
+ | 20.4473 | 6400 | 0.0 | - |
291
+ | 20.6070 | 6450 | 0.0 | - |
292
+ | 20.7668 | 6500 | 0.0 | - |
293
+ | 20.9265 | 6550 | 0.0 | - |
294
+ | 21.0863 | 6600 | 0.0 | - |
295
+ | 21.2460 | 6650 | 0.0 | - |
296
+ | 21.4058 | 6700 | 0.0 | - |
297
+ | 21.5655 | 6750 | 0.0 | - |
298
+ | 21.7252 | 6800 | 0.0 | - |
299
+ | 21.8850 | 6850 | 0.0 | - |
300
+ | 22.0447 | 6900 | 0.0 | - |
301
+ | 22.2045 | 6950 | 0.0 | - |
302
+ | 22.3642 | 7000 | 0.0 | - |
303
+ | 22.5240 | 7050 | 0.0 | - |
304
+ | 22.6837 | 7100 | 0.0 | - |
305
+ | 22.8435 | 7150 | 0.0 | - |
306
+ | 23.0032 | 7200 | 0.0 | - |
307
+ | 23.1629 | 7250 | 0.0 | - |
308
+ | 23.3227 | 7300 | 0.0 | - |
309
+ | 23.4824 | 7350 | 0.0 | - |
310
+ | 23.6422 | 7400 | 0.0 | - |
311
+ | 23.8019 | 7450 | 0.0 | - |
312
+ | 23.9617 | 7500 | 0.0 | - |
313
+ | 24.1214 | 7550 | 0.0 | - |
314
+ | 24.2812 | 7600 | 0.0 | - |
315
+ | 24.4409 | 7650 | 0.0 | - |
316
+ | 24.6006 | 7700 | 0.0 | - |
317
+ | 24.7604 | 7750 | 0.0 | - |
318
+ | 24.9201 | 7800 | 0.0 | - |
319
+ | 25.0799 | 7850 | 0.0 | - |
320
+ | 25.2396 | 7900 | 0.0 | - |
321
+ | 25.3994 | 7950 | 0.0 | - |
322
+ | 25.5591 | 8000 | 0.0 | - |
323
+ | 25.7188 | 8050 | 0.0 | - |
324
+ | 25.8786 | 8100 | 0.0 | - |
325
+ | 26.0383 | 8150 | 0.0 | - |
326
+ | 26.1981 | 8200 | 0.0 | - |
327
+ | 26.3578 | 8250 | 0.0 | - |
328
+ | 26.5176 | 8300 | 0.0 | - |
329
+ | 26.6773 | 8350 | 0.0 | - |
330
+ | 26.8371 | 8400 | 0.0 | - |
331
+ | 26.9968 | 8450 | 0.0 | - |
332
+ | 27.1565 | 8500 | 0.0 | - |
333
+ | 27.3163 | 8550 | 0.0 | - |
334
+ | 27.4760 | 8600 | 0.0 | - |
335
+ | 27.6358 | 8650 | 0.0 | - |
336
+ | 27.7955 | 8700 | 0.0 | - |
337
+ | 27.9553 | 8750 | 0.0 | - |
338
+ | 28.1150 | 8800 | 0.0 | - |
339
+ | 28.2748 | 8850 | 0.0 | - |
340
+ | 28.4345 | 8900 | 0.0 | - |
341
+ | 28.5942 | 8950 | 0.0 | - |
342
+ | 28.7540 | 9000 | 0.0 | - |
343
+ | 28.9137 | 9050 | 0.0 | - |
344
+ | 29.0735 | 9100 | 0.0 | - |
345
+ | 29.2332 | 9150 | 0.0 | - |
346
+ | 29.3930 | 9200 | 0.0 | - |
347
+ | 29.5527 | 9250 | 0.0 | - |
348
+ | 29.7125 | 9300 | 0.0 | - |
349
+ | 29.8722 | 9350 | 0.0 | - |
350
+
351
+ ### Framework Versions
352
+ - Python: 3.10.12
353
+ - SetFit: 1.1.0
354
+ - Sentence Transformers: 3.3.1
355
+ - Transformers: 4.44.2
356
+ - PyTorch: 2.2.0a0+81ea7a4
357
+ - Datasets: 3.2.0
358
+ - Tokenizers: 0.19.1
359
+
360
+ ## Citation
361
+
362
+ ### BibTeX
363
+ ```bibtex
364
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
365
+ doi = {10.48550/ARXIV.2209.11055},
366
+ url = {https://arxiv.org/abs/2209.11055},
367
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
368
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
369
+ title = {Efficient Few-Shot Learning Without Prompts},
370
+ publisher = {arXiv},
371
+ year = {2022},
372
+ copyright = {Creative Commons Attribution 4.0 International}
373
+ }
374
+ ```
375
+
376
+ <!--
377
+ ## Glossary
378
+
379
+ *Clearly define terms in order to be accessible across audiences.*
380
+ -->
381
+
382
+ <!--
383
+ ## Model Card Authors
384
+
385
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
386
+ -->
387
+
388
+ <!--
389
+ ## Model Card Contact
390
+
391
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
392
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_domain",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.44.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.2.0a0+81ea7a4"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6428162db6f212674518b6c88958b2682feb32b383be644e203e98b0cdcf1019
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02e1b5c627ffee019aef0f7c50ffcaebf58f508d3675ff50cd7b3e5ad2a476bd
3
+ size 25479
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff