mini1013 commited on
Commit
3dab106
·
verified ·
1 Parent(s): 04b985c

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,395 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: klue/roberta-base
3
+ library_name: setfit
4
+ metrics:
5
+ - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: 마스크 오브 매그너민티 315g - 파워 마스크/페이스 앤 바디 마스크 팩 위메프 > 뷰티 > 바디/헤어 > 바디케어/워시/제모 >
14
+ 입욕제;위메프 > 뷰티 > 스킨케어 > 팩/마스크;위메프 > 뷰티 > 스킨케어 > 팩/마스크 > 워시오프팩 /필오프팩;위메프 > 뷰티 > 클렌징/필링
15
+ > 클렌징;위메프 > 생활·주방·반려동물 > 바디/헤어 > 바디케어/워시/제모 > 입욕제;(#M)위메프 > 뷰티 > 스킨케어 > 팩/마스크
16
+ > 마스크시트팩 위메프 > 뷰티 > 바디/헤어 > 바디케어/워시/제모 > 입욕제
17
+ - text: '[대용량] 라네즈 크림 스킨 퀵 스킨 팩 100매(140ml) 피부진정 보습 (#M)홈>라네즈 Naverstore > 화장품/미용
18
+ > 마스크/팩 > 수면팩'
19
+ - text: 메디힐 티트리 케어솔루션 에센셜 마스크 이엑스 1매입 × 38개 LotteOn > 뷰티 > 스킨케어 > 마스크/팩 > 마스크팩 LotteOn
20
+ > 뷰티 > 스킨케어 > 마스크/팩 > 마스크팩
21
+ - text: 메디힐 마스크팩 티트리 베스트 10매 세트 수분 미백 여드름 비타 라이트빔 에센셜[10매] 홈>화장품/미용>마스크/팩>마스크시트;홈>전체상품;(#M)홈>브랜드관>메디힐
22
+ Naverstore > 화장품/미용 > 마스크/팩 > 마스크시트
23
+ - text: 메디힐 티트리 케어솔루션 에센셜 마스크 이엑스 1매입 × 29개 (#M)쿠팡 홈>뷰티>스킨케어>마스크/팩>시트마스크 Coupang >
24
+ 뷰티 > 스킨케어 > 마스크/팩 > 시트마스크
25
+ inference: true
26
+ model-index:
27
+ - name: SetFit with klue/roberta-base
28
+ results:
29
+ - task:
30
+ type: text-classification
31
+ name: Text Classification
32
+ dataset:
33
+ name: Unknown
34
+ type: unknown
35
+ split: test
36
+ metrics:
37
+ - type: accuracy
38
+ value: 0.7775471698113208
39
+ name: Accuracy
40
+ ---
41
+
42
+ # SetFit with klue/roberta-base
43
+
44
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [klue/roberta-base](https://huggingface.co/klue/roberta-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
45
+
46
+ The model has been trained using an efficient few-shot learning technique that involves:
47
+
48
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
49
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
50
+
51
+ ## Model Details
52
+
53
+ ### Model Description
54
+ - **Model Type:** SetFit
55
+ - **Sentence Transformer body:** [klue/roberta-base](https://huggingface.co/klue/roberta-base)
56
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
57
+ - **Maximum Sequence Length:** 512 tokens
58
+ - **Number of Classes:** 4 classes
59
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
60
+ <!-- - **Language:** Unknown -->
61
+ <!-- - **License:** Unknown -->
62
+
63
+ ### Model Sources
64
+
65
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
66
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
67
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
68
+
69
+ ### Model Labels
70
+ | Label | Examples |
71
+ |:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
72
+ | 3 | <ul><li>'차앤박 CNP 안티포어 블랙헤드 클리어 키트 스트립 3세트(3회분) (#M)위메프 > 뷰티 > 스킨케어 > 팩/마스크 > 코팩 위메프 > 뷰티 > 스킨케어 > 팩/마스크 > 코팩'</li><li>'미팩토리 3단 돼지코팩 10개입 × 3개 (#M)쿠팡 홈>뷰티>스킨케어>마스크/팩>패치/코팩>코팩 Coupang > 뷰티 > 스킨케어 > 마스크/팩'</li><li>'[차앤박] CNP 안티포어 블랙헤드 버블 코팩 1매 / 넓은 모공 피부 / (#M)화장품/미용>마스크/팩>코팩 Naverstore > 화장품/미용 > 마스크/팩 > 코팩'</li></ul> |
73
+ | 0 | <ul><li>'메디힐×마리끌레르 기획전 앰플/크림/마스크팩~58% 25_메디힐 티트리 케어솔루션 에센셜마스크 [10매] 쇼킹딜 홈>뷰티>클렌징/팩/마스크>팩/마스크;11st>스킨케어>팩/마스크>마스크시트팩;(#M)11st>뷰티>클렌징/팩/마스크>팩/마스크 11st Hour Event > 패션/뷰티 > 뷰티 > 클렌징/팩/마스크 > 팩/마스크'</li><li>'[의료기기] 듀오덤 스팟패치 72매 [의료기기] 듀오덤 스팟패치 72매 (#M)홈>구강/건강용품>패치/겔>스팟패치 OLIVEYOUNG > 베스트 > 구강/건강용품'</li><li>'이지덤 뷰티 릴리프 스팟패치 57개입 3개 (#M)쿠팡 홈>생활용품>건강/의료용품>의약외품/상비용품>반창고/밴드 Coupang > 뷰티 > 스킨케어 > 마스크/팩 > 패치/코팩 > 스팟패치'</li></ul> |
74
+ | 2 | <ul><li>'안스킨 클래리파잉 골드 모델링 팩 1000ml 20개 (#M)홈>화장품/미용>마스크/팩>필오프팩 Naverstore > 화장품/미용 > 마스크/팩 > 필오프팩'</li><li>'[러쉬]오티픽스 75g - 프레쉬 페이스 마스크/마스크 팩 ssg > 뷰티 > 스킨케어 > 마스크/팩 > 시트마스크;ssg > 뷰티 > 헤어/바디 > 세정/입욕용품 > 입욕제/버블바스;ssg > 뷰티 > 스킨케어 > 마스크/팩;ssg > 뷰티 > 스킨케어 > 클렌징 ssg > 뷰티 > 스킨케어 > 마스크/팩 > 시트마스크'</li><li>'푸드어홀릭 콜라겐 필오프팩 150ml / 다시마 MinSellAmount (#M)화장품/향수>팩/마스크>필오프팩 Gmarket > 뷰티 > 화장품/향수 > 팩/마스크 > 필오프팩'</li></ul> |
75
+ | 1 | <ul><li>'물광 콜라겐 크림 티르티르 80ml 생크림 도자기 피부 물광마스크 이유빈 콜라겐물광마스크40ml (#M)홈>전체상품 Naverstore > 화장품/미용 > 남성화장품 > 크림'</li><li>'립 슬리핑 마스크 EX 20g 4종 베리 자몽 민트초코 애플라임 베리 (#M)홈>화장품/미용>마스크/팩>수면팩 Naverstore > 화장품/미용 > 마스크/팩 > 수면팩'</li><li>'설화수 한방 슬리핑마스크 나이트여운팩 120ml 1개 (#M)위메프 > 뷰티 > 스킨케어 > 팩/마스크 > 수면팩 위메프 > 뷰티 > 스킨케어 > 팩/마스크 > 수면팩'</li></ul> |
76
+
77
+ ## Evaluation
78
+
79
+ ### Metrics
80
+ | Label | Accuracy |
81
+ |:--------|:---------|
82
+ | **all** | 0.7775 |
83
+
84
+ ## Uses
85
+
86
+ ### Direct Use for Inference
87
+
88
+ First install the SetFit library:
89
+
90
+ ```bash
91
+ pip install setfit
92
+ ```
93
+
94
+ Then you can load this model and run inference.
95
+
96
+ ```python
97
+ from setfit import SetFitModel
98
+
99
+ # Download from the 🤗 Hub
100
+ model = SetFitModel.from_pretrained("mini1013/master_item_top_bt3")
101
+ # Run inference
102
+ preds = model("[대용량] 라네즈 크림 스킨 퀵 스킨 팩 100매(140ml) 피부진정 보습 (#M)홈>라네즈 Naverstore > 화장품/미용 > 마스크/팩 > 수면팩")
103
+ ```
104
+
105
+ <!--
106
+ ### Downstream Use
107
+
108
+ *List how someone could finetune this model on their own dataset.*
109
+ -->
110
+
111
+ <!--
112
+ ### Out-of-Scope Use
113
+
114
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
115
+ -->
116
+
117
+ <!--
118
+ ## Bias, Risks and Limitations
119
+
120
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
121
+ -->
122
+
123
+ <!--
124
+ ### Recommendations
125
+
126
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
127
+ -->
128
+
129
+ ## Training Details
130
+
131
+ ### Training Set Metrics
132
+ | Training set | Min | Median | Max |
133
+ |:-------------|:----|:-------|:----|
134
+ | Word count | 11 | 21.75 | 91 |
135
+
136
+ | Label | Training Sample Count |
137
+ |:------|:----------------------|
138
+ | 0 | 50 |
139
+ | 1 | 50 |
140
+ | 2 | 50 |
141
+ | 3 | 50 |
142
+
143
+ ### Training Hyperparameters
144
+ - batch_size: (64, 64)
145
+ - num_epochs: (30, 30)
146
+ - max_steps: -1
147
+ - sampling_strategy: oversampling
148
+ - num_iterations: 100
149
+ - body_learning_rate: (2e-05, 1e-05)
150
+ - head_learning_rate: 0.01
151
+ - loss: CosineSimilarityLoss
152
+ - distance_metric: cosine_distance
153
+ - margin: 0.25
154
+ - end_to_end: False
155
+ - use_amp: False
156
+ - warmup_proportion: 0.1
157
+ - l2_weight: 0.01
158
+ - seed: 42
159
+ - eval_max_steps: -1
160
+ - load_best_model_at_end: False
161
+
162
+ ### Training Results
163
+ | Epoch | Step | Training Loss | Validation Loss |
164
+ |:-------:|:----:|:-------------:|:---------------:|
165
+ | 0.0032 | 1 | 0.4549 | - |
166
+ | 0.1597 | 50 | 0.3933 | - |
167
+ | 0.3195 | 100 | 0.3669 | - |
168
+ | 0.4792 | 150 | 0.2841 | - |
169
+ | 0.6390 | 200 | 0.1163 | - |
170
+ | 0.7987 | 250 | 0.0104 | - |
171
+ | 0.9585 | 300 | 0.0072 | - |
172
+ | 1.1182 | 350 | 0.0065 | - |
173
+ | 1.2780 | 400 | 0.0059 | - |
174
+ | 1.4377 | 450 | 0.0058 | - |
175
+ | 1.5974 | 500 | 0.0035 | - |
176
+ | 1.7572 | 550 | 0.0032 | - |
177
+ | 1.9169 | 600 | 0.0032 | - |
178
+ | 2.0767 | 650 | 0.0025 | - |
179
+ | 2.2364 | 700 | 0.0023 | - |
180
+ | 2.3962 | 750 | 0.0023 | - |
181
+ | 2.5559 | 800 | 0.0025 | - |
182
+ | 2.7157 | 850 | 0.0023 | - |
183
+ | 2.8754 | 900 | 0.003 | - |
184
+ | 3.0351 | 950 | 0.0026 | - |
185
+ | 3.1949 | 1000 | 0.0043 | - |
186
+ | 3.3546 | 1050 | 0.0022 | - |
187
+ | 3.5144 | 1100 | 0.0024 | - |
188
+ | 3.6741 | 1150 | 0.0025 | - |
189
+ | 3.8339 | 1200 | 0.0025 | - |
190
+ | 3.9936 | 1250 | 0.0024 | - |
191
+ | 4.1534 | 1300 | 0.0025 | - |
192
+ | 4.3131 | 1350 | 0.0025 | - |
193
+ | 4.4728 | 1400 | 0.0027 | - |
194
+ | 4.6326 | 1450 | 0.0023 | - |
195
+ | 4.7923 | 1500 | 0.0022 | - |
196
+ | 4.9521 | 1550 | 0.0026 | - |
197
+ | 5.1118 | 1600 | 0.0022 | - |
198
+ | 5.2716 | 1650 | 0.0027 | - |
199
+ | 5.4313 | 1700 | 0.0022 | - |
200
+ | 5.5911 | 1750 | 0.0024 | - |
201
+ | 5.7508 | 1800 | 0.0029 | - |
202
+ | 5.9105 | 1850 | 0.0018 | - |
203
+ | 6.0703 | 1900 | 0.0033 | - |
204
+ | 6.2300 | 1950 | 0.002 | - |
205
+ | 6.3898 | 2000 | 0.0027 | - |
206
+ | 6.5495 | 2050 | 0.0021 | - |
207
+ | 6.7093 | 2100 | 0.0022 | - |
208
+ | 6.8690 | 2150 | 0.0023 | - |
209
+ | 7.0288 | 2200 | 0.0026 | - |
210
+ | 7.1885 | 2250 | 0.0018 | - |
211
+ | 7.3482 | 2300 | 0.0024 | - |
212
+ | 7.5080 | 2350 | 0.002 | - |
213
+ | 7.6677 | 2400 | 0.0027 | - |
214
+ | 7.8275 | 2450 | 0.0022 | - |
215
+ | 7.9872 | 2500 | 0.0032 | - |
216
+ | 8.1470 | 2550 | 0.0029 | - |
217
+ | 8.3067 | 2600 | 0.0025 | - |
218
+ | 8.4665 | 2650 | 0.0017 | - |
219
+ | 8.6262 | 2700 | 0.0026 | - |
220
+ | 8.7859 | 2750 | 0.0023 | - |
221
+ | 8.9457 | 2800 | 0.0023 | - |
222
+ | 9.1054 | 2850 | 0.0029 | - |
223
+ | 9.2652 | 2900 | 0.0028 | - |
224
+ | 9.4249 | 2950 | 0.0021 | - |
225
+ | 9.5847 | 3000 | 0.0027 | - |
226
+ | 9.7444 | 3050 | 0.0019 | - |
227
+ | 9.9042 | 3100 | 0.0022 | - |
228
+ | 10.0639 | 3150 | 0.003 | - |
229
+ | 10.2236 | 3200 | 0.0024 | - |
230
+ | 10.3834 | 3250 | 0.0019 | - |
231
+ | 10.5431 | 3300 | 0.0023 | - |
232
+ | 10.7029 | 3350 | 0.0024 | - |
233
+ | 10.8626 | 3400 | 0.0026 | - |
234
+ | 11.0224 | 3450 | 0.0025 | - |
235
+ | 11.1821 | 3500 | 0.0022 | - |
236
+ | 11.3419 | 3550 | 0.0023 | - |
237
+ | 11.5016 | 3600 | 0.0027 | - |
238
+ | 11.6613 | 3650 | 0.0032 | - |
239
+ | 11.8211 | 3700 | 0.0022 | - |
240
+ | 11.9808 | 3750 | 0.0019 | - |
241
+ | 12.1406 | 3800 | 0.0029 | - |
242
+ | 12.3003 | 3850 | 0.0026 | - |
243
+ | 12.4601 | 3900 | 0.0027 | - |
244
+ | 12.6198 | 3950 | 0.0019 | - |
245
+ | 12.7796 | 4000 | 0.0021 | - |
246
+ | 12.9393 | 4050 | 0.0023 | - |
247
+ | 13.0990 | 4100 | 0.0027 | - |
248
+ | 13.2588 | 4150 | 0.0021 | - |
249
+ | 13.4185 | 4200 | 0.0022 | - |
250
+ | 13.5783 | 4250 | 0.0026 | - |
251
+ | 13.7380 | 4300 | 0.0025 | - |
252
+ | 13.8978 | 4350 | 0.0025 | - |
253
+ | 14.0575 | 4400 | 0.0021 | - |
254
+ | 14.2173 | 4450 | 0.0031 | - |
255
+ | 14.3770 | 4500 | 0.0022 | - |
256
+ | 14.5367 | 4550 | 0.0016 | - |
257
+ | 14.6965 | 4600 | 0.0027 | - |
258
+ | 14.8562 | 4650 | 0.0027 | - |
259
+ | 15.0160 | 4700 | 0.0027 | - |
260
+ | 15.1757 | 4750 | 0.0021 | - |
261
+ | 15.3355 | 4800 | 0.0027 | - |
262
+ | 15.4952 | 4850 | 0.0031 | - |
263
+ | 15.6550 | 4900 | 0.0021 | - |
264
+ | 15.8147 | 4950 | 0.0023 | - |
265
+ | 15.9744 | 5000 | 0.002 | - |
266
+ | 16.1342 | 5050 | 0.0024 | - |
267
+ | 16.2939 | 5100 | 0.0026 | - |
268
+ | 16.4537 | 5150 | 0.002 | - |
269
+ | 16.6134 | 5200 | 0.0026 | - |
270
+ | 16.7732 | 5250 | 0.0029 | - |
271
+ | 16.9329 | 5300 | 0.0023 | - |
272
+ | 17.0927 | 5350 | 0.0022 | - |
273
+ | 17.2524 | 5400 | 0.0028 | - |
274
+ | 17.4121 | 5450 | 0.0026 | - |
275
+ | 17.5719 | 5500 | 0.0017 | - |
276
+ | 17.7316 | 5550 | 0.0032 | - |
277
+ | 17.8914 | 5600 | 0.0022 | - |
278
+ | 18.0511 | 5650 | 0.0019 | - |
279
+ | 18.2109 | 5700 | 0.0024 | - |
280
+ | 18.3706 | 5750 | 0.0026 | - |
281
+ | 18.5304 | 5800 | 0.0031 | - |
282
+ | 18.6901 | 5850 | 0.0024 | - |
283
+ | 18.8498 | 5900 | 0.0018 | - |
284
+ | 19.0096 | 5950 | 0.0023 | - |
285
+ | 19.1693 | 6000 | 0.0025 | - |
286
+ | 19.3291 | 6050 | 0.0028 | - |
287
+ | 19.4888 | 6100 | 0.002 | - |
288
+ | 19.6486 | 6150 | 0.0026 | - |
289
+ | 19.8083 | 6200 | 0.0022 | - |
290
+ | 19.9681 | 6250 | 0.0025 | - |
291
+ | 20.1278 | 6300 | 0.0022 | - |
292
+ | 20.2875 | 6350 | 0.0025 | - |
293
+ | 20.4473 | 6400 | 0.0024 | - |
294
+ | 20.6070 | 6450 | 0.0027 | - |
295
+ | 20.7668 | 6500 | 0.0017 | - |
296
+ | 20.9265 | 6550 | 0.0025 | - |
297
+ | 21.0863 | 6600 | 0.0025 | - |
298
+ | 21.2460 | 6650 | 0.002 | - |
299
+ | 21.4058 | 6700 | 0.0033 | - |
300
+ | 21.5655 | 6750 | 0.0021 | - |
301
+ | 21.7252 | 6800 | 0.0022 | - |
302
+ | 21.8850 | 6850 | 0.0027 | - |
303
+ | 22.0447 | 6900 | 0.0021 | - |
304
+ | 22.2045 | 6950 | 0.0028 | - |
305
+ | 22.3642 | 7000 | 0.0021 | - |
306
+ | 22.5240 | 7050 | 0.0021 | - |
307
+ | 22.6837 | 7100 | 0.0027 | - |
308
+ | 22.8435 | 7150 | 0.0021 | - |
309
+ | 23.0032 | 7200 | 0.0029 | - |
310
+ | 23.1629 | 7250 | 0.0036 | - |
311
+ | 23.3227 | 7300 | 0.002 | - |
312
+ | 23.4824 | 7350 | 0.0021 | - |
313
+ | 23.6422 | 7400 | 0.002 | - |
314
+ | 23.8019 | 7450 | 0.0025 | - |
315
+ | 23.9617 | 7500 | 0.0024 | - |
316
+ | 24.1214 | 7550 | 0.0026 | - |
317
+ | 24.2812 | 7600 | 0.002 | - |
318
+ | 24.4409 | 7650 | 0.0024 | - |
319
+ | 24.6006 | 7700 | 0.0025 | - |
320
+ | 24.7604 | 7750 | 0.0023 | - |
321
+ | 24.9201 | 7800 | 0.0027 | - |
322
+ | 25.0799 | 7850 | 0.0023 | - |
323
+ | 25.2396 | 7900 | 0.0024 | - |
324
+ | 25.3994 | 7950 | 0.0027 | - |
325
+ | 25.5591 | 8000 | 0.0038 | - |
326
+ | 25.7188 | 8050 | 0.0065 | - |
327
+ | 25.8786 | 8100 | 0.0037 | - |
328
+ | 26.0383 | 8150 | 0.0032 | - |
329
+ | 26.1981 | 8200 | 0.0031 | - |
330
+ | 26.3578 | 8250 | 0.0028 | - |
331
+ | 26.5176 | 8300 | 0.0024 | - |
332
+ | 26.6773 | 8350 | 0.0023 | - |
333
+ | 26.8371 | 8400 | 0.0028 | - |
334
+ | 26.9968 | 8450 | 0.0023 | - |
335
+ | 27.1565 | 8500 | 0.0028 | - |
336
+ | 27.3163 | 8550 | 0.0025 | - |
337
+ | 27.4760 | 8600 | 0.0027 | - |
338
+ | 27.6358 | 8650 | 0.002 | - |
339
+ | 27.7955 | 8700 | 0.0024 | - |
340
+ | 27.9553 | 8750 | 0.0023 | - |
341
+ | 28.1150 | 8800 | 0.0029 | - |
342
+ | 28.2748 | 8850 | 0.0025 | - |
343
+ | 28.4345 | 8900 | 0.002 | - |
344
+ | 28.5942 | 8950 | 0.0025 | - |
345
+ | 28.7540 | 9000 | 0.002 | - |
346
+ | 28.9137 | 9050 | 0.0027 | - |
347
+ | 29.0735 | 9100 | 0.0028 | - |
348
+ | 29.2332 | 9150 | 0.0016 | - |
349
+ | 29.3930 | 9200 | 0.0032 | - |
350
+ | 29.5527 | 9250 | 0.0026 | - |
351
+ | 29.7125 | 9300 | 0.0025 | - |
352
+ | 29.8722 | 9350 | 0.0025 | - |
353
+
354
+ ### Framework Versions
355
+ - Python: 3.10.12
356
+ - SetFit: 1.1.0
357
+ - Sentence Transformers: 3.3.1
358
+ - Transformers: 4.44.2
359
+ - PyTorch: 2.2.0a0+81ea7a4
360
+ - Datasets: 3.2.0
361
+ - Tokenizers: 0.19.1
362
+
363
+ ## Citation
364
+
365
+ ### BibTeX
366
+ ```bibtex
367
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
368
+ doi = {10.48550/ARXIV.2209.11055},
369
+ url = {https://arxiv.org/abs/2209.11055},
370
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
371
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
372
+ title = {Efficient Few-Shot Learning Without Prompts},
373
+ publisher = {arXiv},
374
+ year = {2022},
375
+ copyright = {Creative Commons Attribution 4.0 International}
376
+ }
377
+ ```
378
+
379
+ <!--
380
+ ## Glossary
381
+
382
+ *Clearly define terms in order to be accessible across audiences.*
383
+ -->
384
+
385
+ <!--
386
+ ## Model Card Authors
387
+
388
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
389
+ -->
390
+
391
+ <!--
392
+ ## Model Card Contact
393
+
394
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
395
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_domain",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.44.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.2.0a0+81ea7a4"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90cfda0cece343dfaefe426a582f0b9fa7b131d16fe1d5dec7e8969898700473
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5655f808f5ecfa7f63286161a6a043ea087a9864093fc0f33278ee74775cef45
3
+ size 25479
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff