Push model using huggingface_hub.
Browse files- 1_Pooling/config.json +10 -0
- README.md +395 -0
- config.json +29 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +4 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +66 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,395 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: klue/roberta-base
|
3 |
+
library_name: setfit
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
pipeline_tag: text-classification
|
7 |
+
tags:
|
8 |
+
- setfit
|
9 |
+
- sentence-transformers
|
10 |
+
- text-classification
|
11 |
+
- generated_from_setfit_trainer
|
12 |
+
widget:
|
13 |
+
- text: 마스크 오브 매그너민티 315g - 파워 마스크/페이스 앤 바디 마스크 팩 위메프 > 뷰티 > 바디/헤어 > 바디케어/워시/제모 >
|
14 |
+
입욕제;위메프 > 뷰티 > 스킨케어 > 팩/마스크;위메프 > 뷰티 > 스킨케어 > 팩/마스크 > 워시오프팩 /필오프팩;위메프 > 뷰티 > 클렌징/필링
|
15 |
+
> 클렌징;위메프 > 생활·주방·반려동물 > 바디/헤어 > 바디케어/워시/제모 > 입욕제;(#M)위메프 > 뷰티 > 스킨케어 > 팩/마스크
|
16 |
+
> 마스크시트팩 위메프 > 뷰티 > 바디/헤어 > 바디케어/워시/제모 > 입욕제
|
17 |
+
- text: '[대용량] 라네즈 크림 스킨 퀵 스킨 팩 100매(140ml) 피부진정 보습 (#M)홈>라네즈 Naverstore > 화장품/미용
|
18 |
+
> 마스크/팩 > 수면팩'
|
19 |
+
- text: 메디힐 티트리 케어솔루션 에센셜 마스크 이엑스 1매입 × 38개 LotteOn > 뷰티 > 스킨케어 > 마스크/팩 > 마스크팩 LotteOn
|
20 |
+
> 뷰티 > 스킨케어 > 마스크/팩 > 마스크팩
|
21 |
+
- text: 메디힐 마스크팩 티트리 베스트 10매 세트 수분 미백 여드름 비타 라이트빔 에센셜[10매] 홈>화장품/미용>마스크/팩>마스크시트;홈>전체상품;(#M)홈>브랜드관>메디힐
|
22 |
+
Naverstore > 화장품/미용 > 마스크/팩 > 마스크시트
|
23 |
+
- text: 메디힐 티트리 케어솔루션 에센셜 마스크 이엑스 1매입 × 29개 (#M)쿠팡 홈>뷰티>스킨케어>마스크/팩>시트마스크 Coupang >
|
24 |
+
뷰티 > 스킨케어 > 마스크/팩 > 시트마스크
|
25 |
+
inference: true
|
26 |
+
model-index:
|
27 |
+
- name: SetFit with klue/roberta-base
|
28 |
+
results:
|
29 |
+
- task:
|
30 |
+
type: text-classification
|
31 |
+
name: Text Classification
|
32 |
+
dataset:
|
33 |
+
name: Unknown
|
34 |
+
type: unknown
|
35 |
+
split: test
|
36 |
+
metrics:
|
37 |
+
- type: accuracy
|
38 |
+
value: 0.7775471698113208
|
39 |
+
name: Accuracy
|
40 |
+
---
|
41 |
+
|
42 |
+
# SetFit with klue/roberta-base
|
43 |
+
|
44 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [klue/roberta-base](https://huggingface.co/klue/roberta-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
45 |
+
|
46 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
47 |
+
|
48 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
49 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
50 |
+
|
51 |
+
## Model Details
|
52 |
+
|
53 |
+
### Model Description
|
54 |
+
- **Model Type:** SetFit
|
55 |
+
- **Sentence Transformer body:** [klue/roberta-base](https://huggingface.co/klue/roberta-base)
|
56 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
57 |
+
- **Maximum Sequence Length:** 512 tokens
|
58 |
+
- **Number of Classes:** 4 classes
|
59 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
60 |
+
<!-- - **Language:** Unknown -->
|
61 |
+
<!-- - **License:** Unknown -->
|
62 |
+
|
63 |
+
### Model Sources
|
64 |
+
|
65 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
66 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
67 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
68 |
+
|
69 |
+
### Model Labels
|
70 |
+
| Label | Examples |
|
71 |
+
|:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
72 |
+
| 3 | <ul><li>'차앤박 CNP 안티포어 블랙헤드 클리어 키트 스트립 3세트(3회분) (#M)위메프 > 뷰티 > 스킨케어 > 팩/마스크 > 코팩 위메프 > 뷰티 > 스킨케어 > 팩/마스크 > 코팩'</li><li>'미팩토리 3단 돼지코팩 10개입 × 3개 (#M)쿠팡 홈>뷰티>스킨케어>마스크/팩>패치/코팩>코팩 Coupang > 뷰티 > 스킨케어 > 마스크/팩'</li><li>'[차앤박] CNP 안티포어 블랙헤드 버블 코팩 1매 / 넓은 모공 피부 / (#M)화장품/미용>마스크/팩>코팩 Naverstore > 화장품/미용 > 마스크/팩 > 코팩'</li></ul> |
|
73 |
+
| 0 | <ul><li>'메디힐×마리끌레르 기획전 앰플/크림/마스크팩~58% 25_메디힐 티트리 케어솔루션 에센셜마스크 [10매] 쇼킹딜 홈>뷰티>클렌징/팩/마스크>팩/마스크;11st>스킨케어>팩/마스크>마스크시트팩;(#M)11st>뷰티>클렌징/팩/마스크>팩/마스크 11st Hour Event > 패션/뷰티 > 뷰티 > 클렌징/팩/마스크 > 팩/마스크'</li><li>'[의료기기] 듀오덤 스팟패치 72매 [의료기기] 듀오덤 스팟패치 72매 (#M)홈>구강/건강용품>패치/겔>스팟패치 OLIVEYOUNG > 베스트 > 구강/건강용품'</li><li>'이지덤 뷰티 릴리프 스팟패치 57개입 3개 (#M)쿠팡 홈>생활용품>건강/의료용품>의약외품/상비용품>반창고/밴드 Coupang > 뷰티 > 스킨케어 > 마스크/팩 > 패치/코팩 > 스팟패치'</li></ul> |
|
74 |
+
| 2 | <ul><li>'안스킨 클래리파잉 골드 모델링 팩 1000ml 20개 (#M)홈>화장품/미용>마스크/팩>필오프팩 Naverstore > 화장품/미용 > 마스크/팩 > 필오프팩'</li><li>'[러쉬]오티픽스 75g - 프레쉬 페이스 마스크/마스크 팩 ssg > 뷰티 > 스킨케어 > 마스크/팩 > 시트마스크;ssg > 뷰티 > 헤어/바디 > 세정/입욕용품 > 입욕제/버블바스;ssg > 뷰티 > 스킨케어 > 마스크/팩;ssg > 뷰티 > 스킨케어 > 클렌징 ssg > 뷰티 > 스킨케어 > 마스크/팩 > 시트마스크'</li><li>'푸드어홀릭 콜라겐 필오프팩 150ml / 다시마 MinSellAmount (#M)화장품/향수>팩/마스크>필오프팩 Gmarket > 뷰티 > 화장품/향수 > 팩/마스크 > 필오프팩'</li></ul> |
|
75 |
+
| 1 | <ul><li>'물광 콜라겐 크림 티르티르 80ml 생크림 도자기 피부 물광마스크 이유빈 콜라겐물광마스크40ml (#M)홈>전체상품 Naverstore > 화장품/미용 > 남성화장품 > 크림'</li><li>'립 슬리핑 마스크 EX 20g 4종 베리 자몽 민트초코 애플라임 베리 (#M)홈>화장품/미용>마스크/팩>수면팩 Naverstore > 화장품/미용 > 마스크/팩 > 수면팩'</li><li>'설화수 한방 슬리핑마스크 나이트여운팩 120ml 1개 (#M)위메프 > 뷰티 > 스킨케어 > 팩/마스크 > 수면팩 위메프 > 뷰티 > 스킨케어 > 팩/마스크 > 수면팩'</li></ul> |
|
76 |
+
|
77 |
+
## Evaluation
|
78 |
+
|
79 |
+
### Metrics
|
80 |
+
| Label | Accuracy |
|
81 |
+
|:--------|:---------|
|
82 |
+
| **all** | 0.7775 |
|
83 |
+
|
84 |
+
## Uses
|
85 |
+
|
86 |
+
### Direct Use for Inference
|
87 |
+
|
88 |
+
First install the SetFit library:
|
89 |
+
|
90 |
+
```bash
|
91 |
+
pip install setfit
|
92 |
+
```
|
93 |
+
|
94 |
+
Then you can load this model and run inference.
|
95 |
+
|
96 |
+
```python
|
97 |
+
from setfit import SetFitModel
|
98 |
+
|
99 |
+
# Download from the 🤗 Hub
|
100 |
+
model = SetFitModel.from_pretrained("mini1013/master_item_top_bt3")
|
101 |
+
# Run inference
|
102 |
+
preds = model("[대용량] 라네즈 크림 스킨 퀵 스킨 팩 100매(140ml) 피부진정 보습 (#M)홈>라네즈 Naverstore > 화장품/미용 > 마스크/팩 > 수면팩")
|
103 |
+
```
|
104 |
+
|
105 |
+
<!--
|
106 |
+
### Downstream Use
|
107 |
+
|
108 |
+
*List how someone could finetune this model on their own dataset.*
|
109 |
+
-->
|
110 |
+
|
111 |
+
<!--
|
112 |
+
### Out-of-Scope Use
|
113 |
+
|
114 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
115 |
+
-->
|
116 |
+
|
117 |
+
<!--
|
118 |
+
## Bias, Risks and Limitations
|
119 |
+
|
120 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
121 |
+
-->
|
122 |
+
|
123 |
+
<!--
|
124 |
+
### Recommendations
|
125 |
+
|
126 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
127 |
+
-->
|
128 |
+
|
129 |
+
## Training Details
|
130 |
+
|
131 |
+
### Training Set Metrics
|
132 |
+
| Training set | Min | Median | Max |
|
133 |
+
|:-------------|:----|:-------|:----|
|
134 |
+
| Word count | 11 | 21.75 | 91 |
|
135 |
+
|
136 |
+
| Label | Training Sample Count |
|
137 |
+
|:------|:----------------------|
|
138 |
+
| 0 | 50 |
|
139 |
+
| 1 | 50 |
|
140 |
+
| 2 | 50 |
|
141 |
+
| 3 | 50 |
|
142 |
+
|
143 |
+
### Training Hyperparameters
|
144 |
+
- batch_size: (64, 64)
|
145 |
+
- num_epochs: (30, 30)
|
146 |
+
- max_steps: -1
|
147 |
+
- sampling_strategy: oversampling
|
148 |
+
- num_iterations: 100
|
149 |
+
- body_learning_rate: (2e-05, 1e-05)
|
150 |
+
- head_learning_rate: 0.01
|
151 |
+
- loss: CosineSimilarityLoss
|
152 |
+
- distance_metric: cosine_distance
|
153 |
+
- margin: 0.25
|
154 |
+
- end_to_end: False
|
155 |
+
- use_amp: False
|
156 |
+
- warmup_proportion: 0.1
|
157 |
+
- l2_weight: 0.01
|
158 |
+
- seed: 42
|
159 |
+
- eval_max_steps: -1
|
160 |
+
- load_best_model_at_end: False
|
161 |
+
|
162 |
+
### Training Results
|
163 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
164 |
+
|:-------:|:----:|:-------------:|:---------------:|
|
165 |
+
| 0.0032 | 1 | 0.4549 | - |
|
166 |
+
| 0.1597 | 50 | 0.3933 | - |
|
167 |
+
| 0.3195 | 100 | 0.3669 | - |
|
168 |
+
| 0.4792 | 150 | 0.2841 | - |
|
169 |
+
| 0.6390 | 200 | 0.1163 | - |
|
170 |
+
| 0.7987 | 250 | 0.0104 | - |
|
171 |
+
| 0.9585 | 300 | 0.0072 | - |
|
172 |
+
| 1.1182 | 350 | 0.0065 | - |
|
173 |
+
| 1.2780 | 400 | 0.0059 | - |
|
174 |
+
| 1.4377 | 450 | 0.0058 | - |
|
175 |
+
| 1.5974 | 500 | 0.0035 | - |
|
176 |
+
| 1.7572 | 550 | 0.0032 | - |
|
177 |
+
| 1.9169 | 600 | 0.0032 | - |
|
178 |
+
| 2.0767 | 650 | 0.0025 | - |
|
179 |
+
| 2.2364 | 700 | 0.0023 | - |
|
180 |
+
| 2.3962 | 750 | 0.0023 | - |
|
181 |
+
| 2.5559 | 800 | 0.0025 | - |
|
182 |
+
| 2.7157 | 850 | 0.0023 | - |
|
183 |
+
| 2.8754 | 900 | 0.003 | - |
|
184 |
+
| 3.0351 | 950 | 0.0026 | - |
|
185 |
+
| 3.1949 | 1000 | 0.0043 | - |
|
186 |
+
| 3.3546 | 1050 | 0.0022 | - |
|
187 |
+
| 3.5144 | 1100 | 0.0024 | - |
|
188 |
+
| 3.6741 | 1150 | 0.0025 | - |
|
189 |
+
| 3.8339 | 1200 | 0.0025 | - |
|
190 |
+
| 3.9936 | 1250 | 0.0024 | - |
|
191 |
+
| 4.1534 | 1300 | 0.0025 | - |
|
192 |
+
| 4.3131 | 1350 | 0.0025 | - |
|
193 |
+
| 4.4728 | 1400 | 0.0027 | - |
|
194 |
+
| 4.6326 | 1450 | 0.0023 | - |
|
195 |
+
| 4.7923 | 1500 | 0.0022 | - |
|
196 |
+
| 4.9521 | 1550 | 0.0026 | - |
|
197 |
+
| 5.1118 | 1600 | 0.0022 | - |
|
198 |
+
| 5.2716 | 1650 | 0.0027 | - |
|
199 |
+
| 5.4313 | 1700 | 0.0022 | - |
|
200 |
+
| 5.5911 | 1750 | 0.0024 | - |
|
201 |
+
| 5.7508 | 1800 | 0.0029 | - |
|
202 |
+
| 5.9105 | 1850 | 0.0018 | - |
|
203 |
+
| 6.0703 | 1900 | 0.0033 | - |
|
204 |
+
| 6.2300 | 1950 | 0.002 | - |
|
205 |
+
| 6.3898 | 2000 | 0.0027 | - |
|
206 |
+
| 6.5495 | 2050 | 0.0021 | - |
|
207 |
+
| 6.7093 | 2100 | 0.0022 | - |
|
208 |
+
| 6.8690 | 2150 | 0.0023 | - |
|
209 |
+
| 7.0288 | 2200 | 0.0026 | - |
|
210 |
+
| 7.1885 | 2250 | 0.0018 | - |
|
211 |
+
| 7.3482 | 2300 | 0.0024 | - |
|
212 |
+
| 7.5080 | 2350 | 0.002 | - |
|
213 |
+
| 7.6677 | 2400 | 0.0027 | - |
|
214 |
+
| 7.8275 | 2450 | 0.0022 | - |
|
215 |
+
| 7.9872 | 2500 | 0.0032 | - |
|
216 |
+
| 8.1470 | 2550 | 0.0029 | - |
|
217 |
+
| 8.3067 | 2600 | 0.0025 | - |
|
218 |
+
| 8.4665 | 2650 | 0.0017 | - |
|
219 |
+
| 8.6262 | 2700 | 0.0026 | - |
|
220 |
+
| 8.7859 | 2750 | 0.0023 | - |
|
221 |
+
| 8.9457 | 2800 | 0.0023 | - |
|
222 |
+
| 9.1054 | 2850 | 0.0029 | - |
|
223 |
+
| 9.2652 | 2900 | 0.0028 | - |
|
224 |
+
| 9.4249 | 2950 | 0.0021 | - |
|
225 |
+
| 9.5847 | 3000 | 0.0027 | - |
|
226 |
+
| 9.7444 | 3050 | 0.0019 | - |
|
227 |
+
| 9.9042 | 3100 | 0.0022 | - |
|
228 |
+
| 10.0639 | 3150 | 0.003 | - |
|
229 |
+
| 10.2236 | 3200 | 0.0024 | - |
|
230 |
+
| 10.3834 | 3250 | 0.0019 | - |
|
231 |
+
| 10.5431 | 3300 | 0.0023 | - |
|
232 |
+
| 10.7029 | 3350 | 0.0024 | - |
|
233 |
+
| 10.8626 | 3400 | 0.0026 | - |
|
234 |
+
| 11.0224 | 3450 | 0.0025 | - |
|
235 |
+
| 11.1821 | 3500 | 0.0022 | - |
|
236 |
+
| 11.3419 | 3550 | 0.0023 | - |
|
237 |
+
| 11.5016 | 3600 | 0.0027 | - |
|
238 |
+
| 11.6613 | 3650 | 0.0032 | - |
|
239 |
+
| 11.8211 | 3700 | 0.0022 | - |
|
240 |
+
| 11.9808 | 3750 | 0.0019 | - |
|
241 |
+
| 12.1406 | 3800 | 0.0029 | - |
|
242 |
+
| 12.3003 | 3850 | 0.0026 | - |
|
243 |
+
| 12.4601 | 3900 | 0.0027 | - |
|
244 |
+
| 12.6198 | 3950 | 0.0019 | - |
|
245 |
+
| 12.7796 | 4000 | 0.0021 | - |
|
246 |
+
| 12.9393 | 4050 | 0.0023 | - |
|
247 |
+
| 13.0990 | 4100 | 0.0027 | - |
|
248 |
+
| 13.2588 | 4150 | 0.0021 | - |
|
249 |
+
| 13.4185 | 4200 | 0.0022 | - |
|
250 |
+
| 13.5783 | 4250 | 0.0026 | - |
|
251 |
+
| 13.7380 | 4300 | 0.0025 | - |
|
252 |
+
| 13.8978 | 4350 | 0.0025 | - |
|
253 |
+
| 14.0575 | 4400 | 0.0021 | - |
|
254 |
+
| 14.2173 | 4450 | 0.0031 | - |
|
255 |
+
| 14.3770 | 4500 | 0.0022 | - |
|
256 |
+
| 14.5367 | 4550 | 0.0016 | - |
|
257 |
+
| 14.6965 | 4600 | 0.0027 | - |
|
258 |
+
| 14.8562 | 4650 | 0.0027 | - |
|
259 |
+
| 15.0160 | 4700 | 0.0027 | - |
|
260 |
+
| 15.1757 | 4750 | 0.0021 | - |
|
261 |
+
| 15.3355 | 4800 | 0.0027 | - |
|
262 |
+
| 15.4952 | 4850 | 0.0031 | - |
|
263 |
+
| 15.6550 | 4900 | 0.0021 | - |
|
264 |
+
| 15.8147 | 4950 | 0.0023 | - |
|
265 |
+
| 15.9744 | 5000 | 0.002 | - |
|
266 |
+
| 16.1342 | 5050 | 0.0024 | - |
|
267 |
+
| 16.2939 | 5100 | 0.0026 | - |
|
268 |
+
| 16.4537 | 5150 | 0.002 | - |
|
269 |
+
| 16.6134 | 5200 | 0.0026 | - |
|
270 |
+
| 16.7732 | 5250 | 0.0029 | - |
|
271 |
+
| 16.9329 | 5300 | 0.0023 | - |
|
272 |
+
| 17.0927 | 5350 | 0.0022 | - |
|
273 |
+
| 17.2524 | 5400 | 0.0028 | - |
|
274 |
+
| 17.4121 | 5450 | 0.0026 | - |
|
275 |
+
| 17.5719 | 5500 | 0.0017 | - |
|
276 |
+
| 17.7316 | 5550 | 0.0032 | - |
|
277 |
+
| 17.8914 | 5600 | 0.0022 | - |
|
278 |
+
| 18.0511 | 5650 | 0.0019 | - |
|
279 |
+
| 18.2109 | 5700 | 0.0024 | - |
|
280 |
+
| 18.3706 | 5750 | 0.0026 | - |
|
281 |
+
| 18.5304 | 5800 | 0.0031 | - |
|
282 |
+
| 18.6901 | 5850 | 0.0024 | - |
|
283 |
+
| 18.8498 | 5900 | 0.0018 | - |
|
284 |
+
| 19.0096 | 5950 | 0.0023 | - |
|
285 |
+
| 19.1693 | 6000 | 0.0025 | - |
|
286 |
+
| 19.3291 | 6050 | 0.0028 | - |
|
287 |
+
| 19.4888 | 6100 | 0.002 | - |
|
288 |
+
| 19.6486 | 6150 | 0.0026 | - |
|
289 |
+
| 19.8083 | 6200 | 0.0022 | - |
|
290 |
+
| 19.9681 | 6250 | 0.0025 | - |
|
291 |
+
| 20.1278 | 6300 | 0.0022 | - |
|
292 |
+
| 20.2875 | 6350 | 0.0025 | - |
|
293 |
+
| 20.4473 | 6400 | 0.0024 | - |
|
294 |
+
| 20.6070 | 6450 | 0.0027 | - |
|
295 |
+
| 20.7668 | 6500 | 0.0017 | - |
|
296 |
+
| 20.9265 | 6550 | 0.0025 | - |
|
297 |
+
| 21.0863 | 6600 | 0.0025 | - |
|
298 |
+
| 21.2460 | 6650 | 0.002 | - |
|
299 |
+
| 21.4058 | 6700 | 0.0033 | - |
|
300 |
+
| 21.5655 | 6750 | 0.0021 | - |
|
301 |
+
| 21.7252 | 6800 | 0.0022 | - |
|
302 |
+
| 21.8850 | 6850 | 0.0027 | - |
|
303 |
+
| 22.0447 | 6900 | 0.0021 | - |
|
304 |
+
| 22.2045 | 6950 | 0.0028 | - |
|
305 |
+
| 22.3642 | 7000 | 0.0021 | - |
|
306 |
+
| 22.5240 | 7050 | 0.0021 | - |
|
307 |
+
| 22.6837 | 7100 | 0.0027 | - |
|
308 |
+
| 22.8435 | 7150 | 0.0021 | - |
|
309 |
+
| 23.0032 | 7200 | 0.0029 | - |
|
310 |
+
| 23.1629 | 7250 | 0.0036 | - |
|
311 |
+
| 23.3227 | 7300 | 0.002 | - |
|
312 |
+
| 23.4824 | 7350 | 0.0021 | - |
|
313 |
+
| 23.6422 | 7400 | 0.002 | - |
|
314 |
+
| 23.8019 | 7450 | 0.0025 | - |
|
315 |
+
| 23.9617 | 7500 | 0.0024 | - |
|
316 |
+
| 24.1214 | 7550 | 0.0026 | - |
|
317 |
+
| 24.2812 | 7600 | 0.002 | - |
|
318 |
+
| 24.4409 | 7650 | 0.0024 | - |
|
319 |
+
| 24.6006 | 7700 | 0.0025 | - |
|
320 |
+
| 24.7604 | 7750 | 0.0023 | - |
|
321 |
+
| 24.9201 | 7800 | 0.0027 | - |
|
322 |
+
| 25.0799 | 7850 | 0.0023 | - |
|
323 |
+
| 25.2396 | 7900 | 0.0024 | - |
|
324 |
+
| 25.3994 | 7950 | 0.0027 | - |
|
325 |
+
| 25.5591 | 8000 | 0.0038 | - |
|
326 |
+
| 25.7188 | 8050 | 0.0065 | - |
|
327 |
+
| 25.8786 | 8100 | 0.0037 | - |
|
328 |
+
| 26.0383 | 8150 | 0.0032 | - |
|
329 |
+
| 26.1981 | 8200 | 0.0031 | - |
|
330 |
+
| 26.3578 | 8250 | 0.0028 | - |
|
331 |
+
| 26.5176 | 8300 | 0.0024 | - |
|
332 |
+
| 26.6773 | 8350 | 0.0023 | - |
|
333 |
+
| 26.8371 | 8400 | 0.0028 | - |
|
334 |
+
| 26.9968 | 8450 | 0.0023 | - |
|
335 |
+
| 27.1565 | 8500 | 0.0028 | - |
|
336 |
+
| 27.3163 | 8550 | 0.0025 | - |
|
337 |
+
| 27.4760 | 8600 | 0.0027 | - |
|
338 |
+
| 27.6358 | 8650 | 0.002 | - |
|
339 |
+
| 27.7955 | 8700 | 0.0024 | - |
|
340 |
+
| 27.9553 | 8750 | 0.0023 | - |
|
341 |
+
| 28.1150 | 8800 | 0.0029 | - |
|
342 |
+
| 28.2748 | 8850 | 0.0025 | - |
|
343 |
+
| 28.4345 | 8900 | 0.002 | - |
|
344 |
+
| 28.5942 | 8950 | 0.0025 | - |
|
345 |
+
| 28.7540 | 9000 | 0.002 | - |
|
346 |
+
| 28.9137 | 9050 | 0.0027 | - |
|
347 |
+
| 29.0735 | 9100 | 0.0028 | - |
|
348 |
+
| 29.2332 | 9150 | 0.0016 | - |
|
349 |
+
| 29.3930 | 9200 | 0.0032 | - |
|
350 |
+
| 29.5527 | 9250 | 0.0026 | - |
|
351 |
+
| 29.7125 | 9300 | 0.0025 | - |
|
352 |
+
| 29.8722 | 9350 | 0.0025 | - |
|
353 |
+
|
354 |
+
### Framework Versions
|
355 |
+
- Python: 3.10.12
|
356 |
+
- SetFit: 1.1.0
|
357 |
+
- Sentence Transformers: 3.3.1
|
358 |
+
- Transformers: 4.44.2
|
359 |
+
- PyTorch: 2.2.0a0+81ea7a4
|
360 |
+
- Datasets: 3.2.0
|
361 |
+
- Tokenizers: 0.19.1
|
362 |
+
|
363 |
+
## Citation
|
364 |
+
|
365 |
+
### BibTeX
|
366 |
+
```bibtex
|
367 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
368 |
+
doi = {10.48550/ARXIV.2209.11055},
|
369 |
+
url = {https://arxiv.org/abs/2209.11055},
|
370 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
371 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
372 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
373 |
+
publisher = {arXiv},
|
374 |
+
year = {2022},
|
375 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
376 |
+
}
|
377 |
+
```
|
378 |
+
|
379 |
+
<!--
|
380 |
+
## Glossary
|
381 |
+
|
382 |
+
*Clearly define terms in order to be accessible across audiences.*
|
383 |
+
-->
|
384 |
+
|
385 |
+
<!--
|
386 |
+
## Model Card Authors
|
387 |
+
|
388 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
389 |
+
-->
|
390 |
+
|
391 |
+
<!--
|
392 |
+
## Model Card Contact
|
393 |
+
|
394 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
395 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "mini1013/master_domain",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"gradient_checkpointing": false,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"layer_norm_eps": 1e-05,
|
17 |
+
"max_position_embeddings": 514,
|
18 |
+
"model_type": "roberta",
|
19 |
+
"num_attention_heads": 12,
|
20 |
+
"num_hidden_layers": 12,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"tokenizer_class": "BertTokenizer",
|
24 |
+
"torch_dtype": "float32",
|
25 |
+
"transformers_version": "4.44.2",
|
26 |
+
"type_vocab_size": 1,
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 32000
|
29 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.44.2",
|
5 |
+
"pytorch": "2.2.0a0+81ea7a4"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"normalize_embeddings": false,
|
3 |
+
"labels": null
|
4 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:90cfda0cece343dfaefe426a582f0b9fa7b131d16fe1d5dec7e8969898700473
|
3 |
+
size 442494816
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5655f808f5ecfa7f63286161a6a043ea087a9864093fc0f33278ee74775cef45
|
3 |
+
size 25479
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "[CLS]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "[SEP]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "[MASK]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "[PAD]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "[SEP]",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[CLS]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[PAD]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[SEP]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[UNK]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "[CLS]",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"cls_token": "[CLS]",
|
47 |
+
"do_basic_tokenize": true,
|
48 |
+
"do_lower_case": false,
|
49 |
+
"eos_token": "[SEP]",
|
50 |
+
"mask_token": "[MASK]",
|
51 |
+
"max_length": 512,
|
52 |
+
"model_max_length": 512,
|
53 |
+
"never_split": null,
|
54 |
+
"pad_to_multiple_of": null,
|
55 |
+
"pad_token": "[PAD]",
|
56 |
+
"pad_token_type_id": 0,
|
57 |
+
"padding_side": "right",
|
58 |
+
"sep_token": "[SEP]",
|
59 |
+
"stride": 0,
|
60 |
+
"strip_accents": null,
|
61 |
+
"tokenize_chinese_chars": true,
|
62 |
+
"tokenizer_class": "BertTokenizer",
|
63 |
+
"truncation_side": "right",
|
64 |
+
"truncation_strategy": "longest_first",
|
65 |
+
"unk_token": "[UNK]"
|
66 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|