File size: 3,747 Bytes
f110873 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
---
base_model: meta-llama/Meta-Llama-3-70B
library_name: peft
license: llama3
tags:
- axolotl
- generated_from_trainer
model-index:
- name: llama3-70b-wh_cove_thght_062024_halluc_rem_refusal_runpod
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: meta-llama/Meta-Llama-3-70B
bf16: true
dataset_prepared_path: last_run_prepared
debug: null
deepspeed: null
early_stopping_patience: null
eval_table_size: null
evals_per_epoch: 0
flash_attention: true
fp16: null
deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json
gradient_accumulation_steps: 1
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
group_by_length: false
hub_model_id: minionai/llama3-70b-wh_cove_thght_062024_halluc_rem_refusal_runpod
hub_strategy: all_checkpoints
learning_rate: 1e-4
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules: null
lr_scheduler: cosine
micro_batch_size: 1
model_type: LlamaForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: ./lora-out
pad_to_sequence_len: true
resume_from_checkpoint: null
sample_packing: true
wandb_entity: minionai
wandb_name: wh_cove_thght_062024_ift
wandb_project: llama3-70b
saves_per_epoch: 1
sequence_len: 8192
special_tokens:
pad_token: <|end_of_text|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
val_set_size: 0
warmup_steps: 250
weight_decay: 0.0
datasets:
- path: minionai/wh_w_cv_thoughts_062024_halluc_filt_refusal_add_ift
type:
system_prompt: ""
system_format: "{system}"
field_system: system
field_instruction: instruction
field_input: input
field_output: output
format: |-
User: {instruction} {input}
Assistant:
# 'no_input_format' cannot include {input}
no_input_format: "### System:\nBelow is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:\nverify(\""
```
</details><br>
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/minionai/llama3-70b/runs/czcejakf)
# llama3-70b-wh_cove_thght_062024_halluc_rem_refusal_runpod
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-70B](https://huggingface.co/meta-llama/Meta-Llama-3-70B) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 8
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 250
- num_epochs: 3
### Training results
### Framework versions
- PEFT 0.11.1
- Transformers 4.42.3
- Pytorch 2.1.2+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1 |