minoosh commited on
Commit
21e3cec
·
verified ·
1 Parent(s): 951fb43

Model save

Browse files
Files changed (2) hide show
  1. README.md +64 -53
  2. model.safetensors +1 -1
README.md CHANGED
@@ -1,57 +1,68 @@
1
  ---
2
- language: en
3
  tags:
4
- - bert
5
- - regression
6
- - biencoder
7
- - similarity
8
- pipeline_tag: text-similarity
9
  ---
10
 
11
- # BiEncoder Regression Model
12
-
13
- This model is a BiEncoder architecture that outputs similarity scores between text pairs.
14
-
15
- ## Model Details
16
- - Base Model: bert-base-uncased
17
- - Task: Regression
18
- - Architecture: BiEncoder with cosine similarity
19
- - Loss Function: mse
20
-
21
- ## Usage
22
-
23
- ```python
24
- from transformers import AutoTokenizer, AutoModel
25
- from modeling import BiEncoderModelRegression
26
-
27
- # Load model components
28
- tokenizer = AutoTokenizer.from_pretrained("minoosh/bert-reg-biencoder-mse")
29
- base_model = AutoModel.from_pretrained("bert-base-uncased")
30
- model = BiEncoderModelRegression(base_model, loss_fn="mse")
31
-
32
- # Load weights
33
- state_dict = torch.load("pytorch_model.bin")
34
- model.load_state_dict(state_dict)
35
-
36
- # Prepare inputs
37
- texts1 = ["first text"]
38
- texts2 = ["second text"]
39
- inputs = tokenizer(
40
- texts1, texts2,
41
- padding=True,
42
- truncation=True,
43
- return_tensors="pt"
44
- )
45
-
46
- # Get similarity scores
47
- outputs = model(**inputs)
48
- similarity_scores = outputs["logits"]
49
- ```
50
-
51
- ## Metrics
52
- The model was trained using mse loss and evaluated using:
53
- - Mean Squared Error (MSE)
54
- - Mean Absolute Error (MAE)
55
- - Pearson Correlation
56
- - Spearman Correlation
57
- - Cosine Similarity
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: transformers
3
  tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: bert-reg-biencoder-mse
7
+ results: []
 
8
  ---
9
 
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # bert-reg-biencoder-mse
14
+
15
+ This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 0.0817
18
+ - Mse: 0.0812
19
+ - Mae: 0.2278
20
+ - Pearson Corr: 0.2835
21
+ - Spearman Corr: 0.2331
22
+ - Cosine Sim: 0.9097
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 2e-05
42
+ - train_batch_size: 32
43
+ - eval_batch_size: 32
44
+ - seed: 42
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - lr_scheduler_warmup_steps: 100
48
+ - num_epochs: 7
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss | Mse | Mae | Pearson Corr | Spearman Corr | Cosine Sim |
53
+ |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------------:|:-------------:|:----------:|
54
+ | 0.1219 | 1.0 | 21 | 0.1124 | 0.1117 | 0.2560 | 0.1406 | 0.0993 | 0.9055 |
55
+ | 0.1017 | 2.0 | 42 | 0.0838 | 0.0833 | 0.2248 | 0.1312 | 0.1239 | 0.9045 |
56
+ | 0.0872 | 3.0 | 63 | 0.0778 | 0.0775 | 0.2205 | 0.2520 | 0.1374 | 0.9097 |
57
+ | 0.0694 | 4.0 | 84 | 0.0860 | 0.0856 | 0.2328 | 0.1923 | 0.1456 | 0.9037 |
58
+ | 0.0533 | 5.0 | 105 | 0.0958 | 0.0951 | 0.2418 | 0.3089 | 0.2252 | 0.9132 |
59
+ | 0.0478 | 6.0 | 126 | 0.0782 | 0.0778 | 0.2216 | 0.2913 | 0.2325 | 0.9096 |
60
+ | 0.0385 | 7.0 | 147 | 0.0817 | 0.0812 | 0.2278 | 0.2835 | 0.2331 | 0.9097 |
61
+
62
+
63
+ ### Framework versions
64
+
65
+ - Transformers 4.45.1
66
+ - Pytorch 2.4.0
67
+ - Datasets 3.0.1
68
+ - Tokenizers 0.20.0
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ccd78fa1d815e5a24d6b8a767e7ef1eefab627b9cc8f3a169e994cd7a8cc7632
3
  size 437953512
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46bca3396ff7ddca92b4780a8f4e826a6d9415a7ad6e1bfc8190ef37274cedda
3
  size 437953512