Trent Oh
commited on
Commit
·
e9bb407
1
Parent(s):
701ffe3
Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 259.04 +/- 16.81
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa5e7156830>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa5e71568c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa5e7156950>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa5e71569e0>", "_build": "<function ActorCriticPolicy._build at 0x7fa5e7156a70>", "forward": "<function ActorCriticPolicy.forward at 0x7fa5e7156b00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa5e7156b90>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa5e7156c20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa5e7156cb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa5e7156d40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa5e7156dd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa5e71a6630>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652679355.4794018, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPOgnD2L6J89HqkkvWzZG772t1U9YmhgvAAAAAAAAAAAhRmqvirlOL2jvYG8P1j7PJqJaz7UFxk7AACAPwAAgD9Nl2G9rMqSPxvgaL5hmwe/K+YevdWZYL0AAAAAAAAAAMato77hSqa8MrnuuSTivzg84uE9ulzvuAAAgD8AAIA/UEWAPvYycjudlBs6/p1KN4IO1jww7ze5AACAPwAAgD+aXUg9w0kluuIyPjr5Kea1TOAbOv5/WLkAAIA/AACAP81o9rwpsAO6uiMHPPk2IjZgEGA6OgQcNQAAgD8AAIA/GvdCvs8OH7yehpe7bbF2uVDvjz1WHrg6AACAPwAAgD8Txmw+EJPxPj5W/L0lW8K+RXE5PZLJzzsAAAAAAAAAAObaUD2legQ/5eRtvccSs74sCGe9zm1XvgAAAAAAAAAAs5KJvXtWs7oz4xa7FerpNgrvE7q2g0S2AACAPwAAgD+anKm+FA9EvXhOwzxjnQi97tt5PoYBJr4AAAAAAACAPzPVRb2uIY+6EDLeO5YtLDdL7Tm7wKcJNgAAgD8AAIA/hmApPk+LB7weDrg8ZGPEugxGZr2F8qO7AACAPwAAgD+a1T68ce1VuSv60LnVe0M0DUyQu6i/+DgAAIA/AACAP5oZzboG76o/txI6vAJ1176Kx4q8q6FYOgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVcxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIWaMeotHMYUCUhpRSlIwBbJRN6AOMAXSUR0B2miHzpX6qdX2UKGgGaAloD0MIP+WYLO4lYUCUhpRSlGgVTegDaBZHQHaqkse4kNZ1fZQoaAZoCWgPQwhXJvxSP8ZgQJSGlFKUaBVN6ANoFkdAdwQO9WZJCnV9lChoBmgJaA9DCHtmSYCakWBAlIaUUpRoFU3oA2gWR0B3Cct5D7ZWdX2UKGgGaAloD0MIQiWuY1xgYECUhpRSlGgVTegDaBZHQHcQt8zAN5N1fZQoaAZoCWgPQwja4hqfyX9XQJSGlFKUaBVN6ANoFkdAdxV8wHqu83V9lChoBmgJaA9DCCsyOiCJG2BAlIaUUpRoFU3oA2gWR0B3GjuSfUWmdX2UKGgGaAloD0MI6Pf9m5fJYUCUhpRSlGgVTegDaBZHQHdkwAp8WsR1fZQoaAZoCWgPQwh/3795cVBlQJSGlFKUaBVN6ANoFkdAd2VZ7ojfN3V9lChoBmgJaA9DCKwb746M31lAlIaUUpRoFU3oA2gWR0B3dTJ+2E00dX2UKGgGaAloD0MIowG8BZLqYECUhpRSlGgVTegDaBZHQHd47qyGBWh1fZQoaAZoCWgPQwizmNh8XIJdQJSGlFKUaBVN6ANoFkdAd4St6ol2NnV9lChoBmgJaA9DCNNmnIaoAF5AlIaUUpRoFU3oA2gWR0B3kl2/zreJdX2UKGgGaAloD0MI+fTYlgEdQECUhpRSlGgVTegDaBZHQHefv/FR51N1fZQoaAZoCWgPQwhUxVT6CYcSQJSGlFKUaBVLl2gWR0B3wnlo11nvdX2UKGgGaAloD0MI6+Bgb+KOYkCUhpRSlGgVTegDaBZHQHfDxh6Skj51fZQoaAZoCWgPQwjlRLsKKYlQQJSGlFKUaBVN6ANoFkdAd9ynIQvpQnV9lChoBmgJaA9DCNUl4xjJIFxAlIaUUpRoFU3oA2gWR0B331uEVWS2dX2UKGgGaAloD0MIJ4Oj5NVoX0CUhpRSlGgVTegDaBZHQHfuMTewcHZ1fZQoaAZoCWgPQwjtR4rIsIouQJSGlFKUaBVLwGgWR0B383MkhRqHdX2UKGgGaAloD0MIH7+36U/YZ0CUhpRSlGgVTZoDaBZHQHg5CZjQRf51fZQoaAZoCWgPQwhyUpj3uKZjQJSGlFKUaBVN6ANoFkdAeD9dznzQNXV9lChoBmgJaA9DCEt4Qq8/nTlAlIaUUpRoFU3oA2gWR0B4RHoUzsQedX2UKGgGaAloD0MISDfCoiLlVECUhpRSlGgVTegDaBZHQHhK2KMvRJF1fZQoaAZoCWgPQwhBYyZRL/BdQJSGlFKUaBVN6ANoFkdAeFNx0MgEEHV9lChoBmgJaA9DCH2TpkHRiGFAlIaUUpRoFU3oA2gWR0B4V1hd+ocadX2UKGgGaAloD0MIi3H+JhSVX0CUhpRSlGgVTegDaBZHQHhX+7pV0cR1fZQoaAZoCWgPQwg09bpFYGhZQJSGlFKUaBVN6ANoFkdAeK89ZRsMzHV9lChoBmgJaA9DCANEwYwp6BXAlIaUUpRoFUucaBZHQHivqVdHDrJ1fZQoaAZoCWgPQwhk5gKXx0NjQJSGlFKUaBVN6ANoFkdAeLKw7kn1F3V9lChoBmgJaA9DCPVLxFvnbWNAlIaUUpRoFU3oA2gWR0B4vlvtMPBjdX2UKGgGaAloD0MIj1VKz/QmM8CUhpRSlGgVTegDaBZHQHjL4ScslLR1fZQoaAZoCWgPQwjsF+yGbUZZQJSGlFKUaBVN6ANoFkdAePzYraufVnV9lChoBmgJaA9DCB0dVyM7nWNAlIaUUpRoFU3oA2gWR0B5FywX668QdX2UKGgGaAloD0MI8gwa+icOZECUhpRSlGgVTegDaBZHQHkZ4hpxm051fZQoaAZoCWgPQwiHp1fKMspdQJSGlFKUaBVN6ANoFkdAeSg6WgOBlXV9lChoBmgJaA9DCMLfL2ZLXiXAlIaUUpRoFUu8aBZHQHkrePBBRht1fZQoaAZoCWgPQwjyBpj5Dh1eQJSGlFKUaBVN6ANoFkdAeS2RLK3d9HV9lChoBmgJaA9DCCBB8WPM9TLAlIaUUpRoFUu1aBZHQHlUe9Ba9sd1fZQoaAZoCWgPQwjs98Q6VYViQJSGlFKUaBVN6ANoFkdAeWqRB/qgRXV9lChoBmgJaA9DCLaF56VihzRAlIaUUpRoFU3oA2gWR0B5b9nkDIRzdX2UKGgGaAloD0MIGFsIclCPYECUhpRSlGgVTegDaBZHQHl5b0WdmQN1fZQoaAZoCWgPQwhOl8XE5oRbQJSGlFKUaBVN6ANoFkdAeYEtDUmUn3V9lChoBmgJaA9DCKiq0EAsJF5AlIaUUpRoFU3oA2gWR0B5hM8mrsBydX2UKGgGaAloD0MIBr03hgABXECUhpRSlGgVTegDaBZHQHmFV9nbqQl1fZQoaAZoCWgPQwit26D2W09fQJSGlFKUaBVN6ANoFkdAedtir1dxAHV9lChoBmgJaA9DCLOaric6P2RAlIaUUpRoFU3oA2gWR0B529FiKBNFdX2UKGgGaAloD0MIPEz75v76NkCUhpRSlGgVS8VoFkdAedwhKlHjInV9lChoBmgJaA9DCFoO9FDbDmBAlIaUUpRoFU3oA2gWR0B53lf0Eov0dX2UKGgGaAloD0MIqRJlb6mWZECUhpRSlGgVTegDaBZHQHnoM14xDb91fZQoaAZoCWgPQwgUl+MViD4qQJSGlFKUaBVLv2gWR0B57c8mrsBydX2UKGgGaAloD0MIKcx7nOl5YkCUhpRSlGgVTegDaBZHQHnzE0zj3mF1fZQoaAZoCWgPQwj5wI7/AtdfQJSGlFKUaBVN6ANoFkdAejm1uBMBZXV9lChoBmgJaA9DCOo8Kv7vsFtAlIaUUpRoFU3oA2gWR0B6PG+j/MnrdX2UKGgGaAloD0MI+WabG9MpZkCUhpRSlGgVTegDaBZHQHpKZPRArx11fZQoaAZoCWgPQwhcqz3sBRhkQJSGlFKUaBVN6ANoFkdAek+m8dxQznV9lChoBmgJaA9DCOgzoN6MKhJAlIaUUpRoFUuxaBZHQHplB9oexOd1fZQoaAZoCWgPQwiK5ZZWQ5ldQJSGlFKUaBVN6ANoFkdAengaEzwc53V9lChoBmgJaA9DCOc1donqr0RAlIaUUpRoFUueaBZHQHqMh02cawV1fZQoaAZoCWgPQwiQ2sTJ/TNZQJSGlFKUaBVN6ANoFkdAepIVWjoIOnV9lChoBmgJaA9DCCoaa39na1dAlIaUUpRoFU3oA2gWR0B6nElTm4iHdX2UKGgGaAloD0MIqwSLw5k/W0CUhpRSlGgVTegDaBZHQHqkYV6/qPh1fZQoaAZoCWgPQwhEwvf+hqZiQJSGlFKUaBVN6ANoFkdAeqhO+qR2bHV9lChoBmgJaA9DCK358ZcWUmNAlIaUUpRoFU3oA2gWR0B7BAVvddmhdX2UKGgGaAloD0MIo3kAi3yZZUCUhpRSlGgVTegDaBZHQHsEgTAWSEF1fZQoaAZoCWgPQwgjumddo1ZjQJSGlFKUaBVN6ANoFkdAewTuNxVAA3V9lChoBmgJaA9DCNXsgVZgJmRAlIaUUpRoFU3oA2gWR0B7B9FtsN2DdX2UKGgGaAloD0MIy52ZYDg/Y0CUhpRSlGgVTegDaBZHQHsTRfrrxAl1fZQoaAZoCWgPQwhM++b+6o1JQJSGlFKUaBVLqmgWR0B7FYBikO7QdX2UKGgGaAloD0MIqb7zixLAW0CUhpRSlGgVTegDaBZHQHsako4MnZ11fZQoaAZoCWgPQwjs2t5uSV9kQJSGlFKUaBVN6ANoFkdAeyA4/NZ/1HV9lChoBmgJaA9DCPXyO01mHEBAlIaUUpRoFUvGaBZHQHstp39rGip1fZQoaAZoCWgPQwgx68VQTvtiQJSGlFKUaBVN6ANoFkdAe2byVObiInV9lChoBmgJaA9DCOEM/n6xdGBAlIaUUpRoFU3oA2gWR0B7eTreIl+mdX2UKGgGaAloD0MIU+dR8f9eYUCUhpRSlGgVTegDaBZHQHt+lSKm8/V1fZQoaAZoCWgPQwhQ/1nzY55hQJSGlFKUaBVN6ANoFkdAe6dVSGahH3V9lChoBmgJaA9DCNCaH39pFGBAlIaUUpRoFU3oA2gWR0B7uvZxrBTGdX2UKGgGaAloD0MIHXOesa+NZECUhpRSlGgVTegDaBZHQHvAckhRqGl1fZQoaAZoCWgPQwi5Fi1A2yxiQJSGlFKUaBVN6ANoFkdAe8opPRArx3V9lChoBmgJaA9DCBH8byU75GJAlIaUUpRoFU3oA2gWR0B70W2sq8UVdX2UKGgGaAloD0MIUg5mE2C8Q0CUhpRSlGgVS8toFkdAe9asMiKR+3V9lChoBmgJaA9DCARxHk7grWhAlIaUUpRoFU3oA2gWR0B8K4wlByCGdX2UKGgGaAloD0MI6C6JsyKLW0CUhpRSlGgVTegDaBZHQHwsDwlSjxl1fZQoaAZoCWgPQwiuoGmJld5lQJSGlFKUaBVN6ANoFkdAfCxfu1F6RnV9lChoBmgJaA9DCAw7jEl/d0FAlIaUUpRoFUvNaBZHQHwxbdrO7g91fZQoaAZoCWgPQwjvchHfCZ5jQJSGlFKUaBVN6ANoFkdAfDm2WpqASXV9lChoBmgJaA9DCNjviXWqnWNAlIaUUpRoFU3oA2gWR0B8O7gxagVXdX2UKGgGaAloD0MIAhB39apIYECUhpRSlGgVTegDaBZHQHw/4j8k2P11fZQoaAZoCWgPQwggRgiPtkphQJSGlFKUaBVN6ANoFkdAfEUa+vhZQ3V9lChoBmgJaA9DCAqGcw0zhENAlIaUUpRoFUu3aBZHQHxK96X0Gu91fZQoaAZoCWgPQwgQ6iKFspRcQJSGlFKUaBVN6ANoFkdAfFBwazeGf3V9lChoBmgJaA9DCGh4swZvt2JAlIaUUpRoFU3oA2gWR0B8hTGIbfgrdX2UKGgGaAloD0MIA+0OKQajYECUhpRSlGgVTegDaBZHQHyX75ylvZR1fZQoaAZoCWgPQwjJ5qp5DrphQJSGlFKUaBVN6ANoFkdAfJ3rULDyfHV9lChoBmgJaA9DCKZ9c3/1s1hAlIaUUpRoFU3oA2gWR0B85xUzbeuWdX2UKGgGaAloD0MIFeC7zZsqZECUhpRSlGgVTegDaBZHQHz5X/Lkjop1fZQoaAZoCWgPQwgrUfaWcmY/QJSGlFKUaBVN6ANoFkdAfQLyKekHlnV9lChoBmgJaA9DCF8lH7uLFGVAlIaUUpRoFU3oA2gWR0B9ChCKJl8PdX2UKGgGaAloD0MIkIZT5ubdWkCUhpRSlGgVTegDaBZHQH0dXKGL1mJ1fZQoaAZoCWgPQwiIgEOoUjZcQJSGlFKUaBVN6ANoFkdAfR3pi7TUiXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:105b7053ae29acb63270f16f896bf30a5ada11fcdbbf7a2677017b1798917eb8
|
3 |
+
size 144032
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fa5e7156830>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa5e71568c0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa5e7156950>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa5e71569e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fa5e7156a70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fa5e7156b00>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa5e7156b90>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fa5e7156c20>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa5e7156cb0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa5e7156d40>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa5e7156dd0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fa5e71a6630>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652679355.4794018,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPOgnD2L6J89HqkkvWzZG772t1U9YmhgvAAAAAAAAAAAhRmqvirlOL2jvYG8P1j7PJqJaz7UFxk7AACAPwAAgD9Nl2G9rMqSPxvgaL5hmwe/K+YevdWZYL0AAAAAAAAAAMato77hSqa8MrnuuSTivzg84uE9ulzvuAAAgD8AAIA/UEWAPvYycjudlBs6/p1KN4IO1jww7ze5AACAPwAAgD+aXUg9w0kluuIyPjr5Kea1TOAbOv5/WLkAAIA/AACAP81o9rwpsAO6uiMHPPk2IjZgEGA6OgQcNQAAgD8AAIA/GvdCvs8OH7yehpe7bbF2uVDvjz1WHrg6AACAPwAAgD8Txmw+EJPxPj5W/L0lW8K+RXE5PZLJzzsAAAAAAAAAAObaUD2legQ/5eRtvccSs74sCGe9zm1XvgAAAAAAAAAAs5KJvXtWs7oz4xa7FerpNgrvE7q2g0S2AACAPwAAgD+anKm+FA9EvXhOwzxjnQi97tt5PoYBJr4AAAAAAACAPzPVRb2uIY+6EDLeO5YtLDdL7Tm7wKcJNgAAgD8AAIA/hmApPk+LB7weDrg8ZGPEugxGZr2F8qO7AACAPwAAgD+a1T68ce1VuSv60LnVe0M0DUyQu6i/+DgAAIA/AACAP5oZzboG76o/txI6vAJ1176Kx4q8q6FYOgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVcxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIWaMeotHMYUCUhpRSlIwBbJRN6AOMAXSUR0B2miHzpX6qdX2UKGgGaAloD0MIP+WYLO4lYUCUhpRSlGgVTegDaBZHQHaqkse4kNZ1fZQoaAZoCWgPQwhXJvxSP8ZgQJSGlFKUaBVN6ANoFkdAdwQO9WZJCnV9lChoBmgJaA9DCHtmSYCakWBAlIaUUpRoFU3oA2gWR0B3Cct5D7ZWdX2UKGgGaAloD0MIQiWuY1xgYECUhpRSlGgVTegDaBZHQHcQt8zAN5N1fZQoaAZoCWgPQwja4hqfyX9XQJSGlFKUaBVN6ANoFkdAdxV8wHqu83V9lChoBmgJaA9DCCsyOiCJG2BAlIaUUpRoFU3oA2gWR0B3GjuSfUWmdX2UKGgGaAloD0MI6Pf9m5fJYUCUhpRSlGgVTegDaBZHQHdkwAp8WsR1fZQoaAZoCWgPQwh/3795cVBlQJSGlFKUaBVN6ANoFkdAd2VZ7ojfN3V9lChoBmgJaA9DCKwb746M31lAlIaUUpRoFU3oA2gWR0B3dTJ+2E00dX2UKGgGaAloD0MIowG8BZLqYECUhpRSlGgVTegDaBZHQHd47qyGBWh1fZQoaAZoCWgPQwizmNh8XIJdQJSGlFKUaBVN6ANoFkdAd4St6ol2NnV9lChoBmgJaA9DCNNmnIaoAF5AlIaUUpRoFU3oA2gWR0B3kl2/zreJdX2UKGgGaAloD0MI+fTYlgEdQECUhpRSlGgVTegDaBZHQHefv/FR51N1fZQoaAZoCWgPQwhUxVT6CYcSQJSGlFKUaBVLl2gWR0B3wnlo11nvdX2UKGgGaAloD0MI6+Bgb+KOYkCUhpRSlGgVTegDaBZHQHfDxh6Skj51fZQoaAZoCWgPQwjlRLsKKYlQQJSGlFKUaBVN6ANoFkdAd9ynIQvpQnV9lChoBmgJaA9DCNUl4xjJIFxAlIaUUpRoFU3oA2gWR0B331uEVWS2dX2UKGgGaAloD0MIJ4Oj5NVoX0CUhpRSlGgVTegDaBZHQHfuMTewcHZ1fZQoaAZoCWgPQwjtR4rIsIouQJSGlFKUaBVLwGgWR0B383MkhRqHdX2UKGgGaAloD0MIH7+36U/YZ0CUhpRSlGgVTZoDaBZHQHg5CZjQRf51fZQoaAZoCWgPQwhyUpj3uKZjQJSGlFKUaBVN6ANoFkdAeD9dznzQNXV9lChoBmgJaA9DCEt4Qq8/nTlAlIaUUpRoFU3oA2gWR0B4RHoUzsQedX2UKGgGaAloD0MISDfCoiLlVECUhpRSlGgVTegDaBZHQHhK2KMvRJF1fZQoaAZoCWgPQwhBYyZRL/BdQJSGlFKUaBVN6ANoFkdAeFNx0MgEEHV9lChoBmgJaA9DCH2TpkHRiGFAlIaUUpRoFU3oA2gWR0B4V1hd+ocadX2UKGgGaAloD0MIi3H+JhSVX0CUhpRSlGgVTegDaBZHQHhX+7pV0cR1fZQoaAZoCWgPQwg09bpFYGhZQJSGlFKUaBVN6ANoFkdAeK89ZRsMzHV9lChoBmgJaA9DCANEwYwp6BXAlIaUUpRoFUucaBZHQHivqVdHDrJ1fZQoaAZoCWgPQwhk5gKXx0NjQJSGlFKUaBVN6ANoFkdAeLKw7kn1F3V9lChoBmgJaA9DCPVLxFvnbWNAlIaUUpRoFU3oA2gWR0B4vlvtMPBjdX2UKGgGaAloD0MIj1VKz/QmM8CUhpRSlGgVTegDaBZHQHjL4ScslLR1fZQoaAZoCWgPQwjsF+yGbUZZQJSGlFKUaBVN6ANoFkdAePzYraufVnV9lChoBmgJaA9DCB0dVyM7nWNAlIaUUpRoFU3oA2gWR0B5FywX668QdX2UKGgGaAloD0MI8gwa+icOZECUhpRSlGgVTegDaBZHQHkZ4hpxm051fZQoaAZoCWgPQwiHp1fKMspdQJSGlFKUaBVN6ANoFkdAeSg6WgOBlXV9lChoBmgJaA9DCMLfL2ZLXiXAlIaUUpRoFUu8aBZHQHkrePBBRht1fZQoaAZoCWgPQwjyBpj5Dh1eQJSGlFKUaBVN6ANoFkdAeS2RLK3d9HV9lChoBmgJaA9DCCBB8WPM9TLAlIaUUpRoFUu1aBZHQHlUe9Ba9sd1fZQoaAZoCWgPQwjs98Q6VYViQJSGlFKUaBVN6ANoFkdAeWqRB/qgRXV9lChoBmgJaA9DCLaF56VihzRAlIaUUpRoFU3oA2gWR0B5b9nkDIRzdX2UKGgGaAloD0MIGFsIclCPYECUhpRSlGgVTegDaBZHQHl5b0WdmQN1fZQoaAZoCWgPQwhOl8XE5oRbQJSGlFKUaBVN6ANoFkdAeYEtDUmUn3V9lChoBmgJaA9DCKiq0EAsJF5AlIaUUpRoFU3oA2gWR0B5hM8mrsBydX2UKGgGaAloD0MIBr03hgABXECUhpRSlGgVTegDaBZHQHmFV9nbqQl1fZQoaAZoCWgPQwit26D2W09fQJSGlFKUaBVN6ANoFkdAedtir1dxAHV9lChoBmgJaA9DCLOaric6P2RAlIaUUpRoFU3oA2gWR0B529FiKBNFdX2UKGgGaAloD0MIPEz75v76NkCUhpRSlGgVS8VoFkdAedwhKlHjInV9lChoBmgJaA9DCFoO9FDbDmBAlIaUUpRoFU3oA2gWR0B53lf0Eov0dX2UKGgGaAloD0MIqRJlb6mWZECUhpRSlGgVTegDaBZHQHnoM14xDb91fZQoaAZoCWgPQwgUl+MViD4qQJSGlFKUaBVLv2gWR0B57c8mrsBydX2UKGgGaAloD0MIKcx7nOl5YkCUhpRSlGgVTegDaBZHQHnzE0zj3mF1fZQoaAZoCWgPQwj5wI7/AtdfQJSGlFKUaBVN6ANoFkdAejm1uBMBZXV9lChoBmgJaA9DCOo8Kv7vsFtAlIaUUpRoFU3oA2gWR0B6PG+j/MnrdX2UKGgGaAloD0MI+WabG9MpZkCUhpRSlGgVTegDaBZHQHpKZPRArx11fZQoaAZoCWgPQwhcqz3sBRhkQJSGlFKUaBVN6ANoFkdAek+m8dxQznV9lChoBmgJaA9DCOgzoN6MKhJAlIaUUpRoFUuxaBZHQHplB9oexOd1fZQoaAZoCWgPQwiK5ZZWQ5ldQJSGlFKUaBVN6ANoFkdAengaEzwc53V9lChoBmgJaA9DCOc1donqr0RAlIaUUpRoFUueaBZHQHqMh02cawV1fZQoaAZoCWgPQwiQ2sTJ/TNZQJSGlFKUaBVN6ANoFkdAepIVWjoIOnV9lChoBmgJaA9DCCoaa39na1dAlIaUUpRoFU3oA2gWR0B6nElTm4iHdX2UKGgGaAloD0MIqwSLw5k/W0CUhpRSlGgVTegDaBZHQHqkYV6/qPh1fZQoaAZoCWgPQwhEwvf+hqZiQJSGlFKUaBVN6ANoFkdAeqhO+qR2bHV9lChoBmgJaA9DCK358ZcWUmNAlIaUUpRoFU3oA2gWR0B7BAVvddmhdX2UKGgGaAloD0MIo3kAi3yZZUCUhpRSlGgVTegDaBZHQHsEgTAWSEF1fZQoaAZoCWgPQwgjumddo1ZjQJSGlFKUaBVN6ANoFkdAewTuNxVAA3V9lChoBmgJaA9DCNXsgVZgJmRAlIaUUpRoFU3oA2gWR0B7B9FtsN2DdX2UKGgGaAloD0MIy52ZYDg/Y0CUhpRSlGgVTegDaBZHQHsTRfrrxAl1fZQoaAZoCWgPQwhM++b+6o1JQJSGlFKUaBVLqmgWR0B7FYBikO7QdX2UKGgGaAloD0MIqb7zixLAW0CUhpRSlGgVTegDaBZHQHsako4MnZ11fZQoaAZoCWgPQwjs2t5uSV9kQJSGlFKUaBVN6ANoFkdAeyA4/NZ/1HV9lChoBmgJaA9DCPXyO01mHEBAlIaUUpRoFUvGaBZHQHstp39rGip1fZQoaAZoCWgPQwgx68VQTvtiQJSGlFKUaBVN6ANoFkdAe2byVObiInV9lChoBmgJaA9DCOEM/n6xdGBAlIaUUpRoFU3oA2gWR0B7eTreIl+mdX2UKGgGaAloD0MIU+dR8f9eYUCUhpRSlGgVTegDaBZHQHt+lSKm8/V1fZQoaAZoCWgPQwhQ/1nzY55hQJSGlFKUaBVN6ANoFkdAe6dVSGahH3V9lChoBmgJaA9DCNCaH39pFGBAlIaUUpRoFU3oA2gWR0B7uvZxrBTGdX2UKGgGaAloD0MIHXOesa+NZECUhpRSlGgVTegDaBZHQHvAckhRqGl1fZQoaAZoCWgPQwi5Fi1A2yxiQJSGlFKUaBVN6ANoFkdAe8opPRArx3V9lChoBmgJaA9DCBH8byU75GJAlIaUUpRoFU3oA2gWR0B70W2sq8UVdX2UKGgGaAloD0MIUg5mE2C8Q0CUhpRSlGgVS8toFkdAe9asMiKR+3V9lChoBmgJaA9DCARxHk7grWhAlIaUUpRoFU3oA2gWR0B8K4wlByCGdX2UKGgGaAloD0MI6C6JsyKLW0CUhpRSlGgVTegDaBZHQHwsDwlSjxl1fZQoaAZoCWgPQwiuoGmJld5lQJSGlFKUaBVN6ANoFkdAfCxfu1F6RnV9lChoBmgJaA9DCAw7jEl/d0FAlIaUUpRoFUvNaBZHQHwxbdrO7g91fZQoaAZoCWgPQwjvchHfCZ5jQJSGlFKUaBVN6ANoFkdAfDm2WpqASXV9lChoBmgJaA9DCNjviXWqnWNAlIaUUpRoFU3oA2gWR0B8O7gxagVXdX2UKGgGaAloD0MIAhB39apIYECUhpRSlGgVTegDaBZHQHw/4j8k2P11fZQoaAZoCWgPQwggRgiPtkphQJSGlFKUaBVN6ANoFkdAfEUa+vhZQ3V9lChoBmgJaA9DCAqGcw0zhENAlIaUUpRoFUu3aBZHQHxK96X0Gu91fZQoaAZoCWgPQwgQ6iKFspRcQJSGlFKUaBVN6ANoFkdAfFBwazeGf3V9lChoBmgJaA9DCGh4swZvt2JAlIaUUpRoFU3oA2gWR0B8hTGIbfgrdX2UKGgGaAloD0MIA+0OKQajYECUhpRSlGgVTegDaBZHQHyX75ylvZR1fZQoaAZoCWgPQwjJ5qp5DrphQJSGlFKUaBVN6ANoFkdAfJ3rULDyfHV9lChoBmgJaA9DCKZ9c3/1s1hAlIaUUpRoFU3oA2gWR0B85xUzbeuWdX2UKGgGaAloD0MIFeC7zZsqZECUhpRSlGgVTegDaBZHQHz5X/Lkjop1fZQoaAZoCWgPQwgrUfaWcmY/QJSGlFKUaBVN6ANoFkdAfQLyKekHlnV9lChoBmgJaA9DCF8lH7uLFGVAlIaUUpRoFU3oA2gWR0B9ChCKJl8PdX2UKGgGaAloD0MIkIZT5ubdWkCUhpRSlGgVTegDaBZHQH0dXKGL1mJ1fZQoaAZoCWgPQwiIgEOoUjZcQJSGlFKUaBVN6ANoFkdAfR3pi7TUiXVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d61d2d5857ca575c9c5b948df0a835cde56ef705add211356243e6c646991d6a
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad03e730d80468e648d8224d05fbd12a5600946a360af2d1ee4f3200de1bd159
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5e24d31a91cabbf3f7ea4b89b9ae5cceeb9cda3bb53f802f43b8686c68b16c74
|
3 |
+
size 242422
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 259.0399650666764, "std_reward": 16.810896445997052, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-16T06:08:47.428467"}
|