Ngit commited on
Commit
253445f
·
verified ·
1 Parent(s): 84984aa

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +44 -0
README.md ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ ---
5
+
6
+ # Text Classification Toxicity
7
+
8
+ This model is a fined-tuned version of [nreimers/MiniLMv2-L6-H384-distilled-from-BERT-Large](https://huggingface.co/nreimers/MiniLMv2-L6-H384-distilled-from-BERT-Large) on the on the [Jigsaw 1st Kaggle competition](https://www.kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge) dataset using [unitary/toxic-bert](https://huggingface.co/unitary/toxic-bert) as teacher model.
9
+ The quantized version in ONNX format can be found [here](https://huggingface.co/minuva/MiniLMv2-toxic-jigaw-lite-onnx).
10
+
11
+ The model contains two labels only (toxicity and severe toxicity). For the model with all labels refer to this [page]()
12
+
13
+ # Load the Model
14
+
15
+ ```py
16
+ from transformers import pipeline
17
+
18
+ pipe = pipeline(model='minuva/MiniLMv2-toxic-jijgsaw-lite', task='text-classification')
19
+ pipe("This is pure trash")
20
+ # [{'label': 'toxic', 'score': 0.9383478164672852}]
21
+ ```
22
+
23
+ # Training hyperparameters
24
+
25
+ The following hyperparameters were used during training:
26
+ - learning_rate: 6e-05
27
+ - train_batch_size: 48
28
+ - eval_batch_size: 48
29
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
30
+ - lr_scheduler_type: linear
31
+ - num_epochs: 10
32
+ - warmup_ratio: 0.1
33
+
34
+
35
+ # Metrics (comparison with teacher model)
36
+
37
+ | Teacher (params) | Student (params) | Set (metric) | Score (teacher) | Score (student) |
38
+ |--------------------|-------------|----------|--------| --------|
39
+ | unitary/toxic-bert (110M) | MiniLMv2-toxic-jijgsaw-lite (23M) | Test (ROC_AUC) | 0.982677 | 0.9815 |
40
+
41
+ # Deployment
42
+
43
+ Check this [repository](https://github.com/minuva/toxicity-prediction-serverless) to see how to easily deploy this model in a serverless environment with fast CPU inference and light resource utilization.
44
+