Fixed README file.
Browse files
README.md
CHANGED
@@ -10,11 +10,11 @@ license: apache-2.0
|
|
10 |
---
|
11 |
## This version
|
12 |
|
13 |
-
This model was converted to a **8-bit GGUF format (`q8_0`)** from **[`Alibaba-NLP/gte-Qwen2-
|
14 |
|
15 |
Custom conversion script settings:
|
16 |
```json
|
17 |
-
"gte-Qwen2-1.5B-instruct": {
|
18 |
"model_name": "gte-Qwen2-1.5B-instruct",
|
19 |
"hq_quant_type": "f32",
|
20 |
"final_quant_type": "q8_0",
|
@@ -24,28 +24,22 @@ Custom conversion script settings:
|
|
24 |
"numexpr_max_thread": 8
|
25 |
}
|
26 |
```
|
27 |
-
Please refer to the [original model card](https://huggingface.co/Alibaba-NLP/gte-Qwen2-
|
28 |
|
29 |
|
30 |
-
## gte-Qwen2-
|
31 |
|
32 |
-
**gte-Qwen2-
|
33 |
-
|
34 |
-
Recently, the [**Qwen team**](https://huggingface.co/Qwen) released the Qwen2 series models, and we have trained the **gte-Qwen2-7B-instruct** model based on the [Qwen2-7B](https://huggingface.co/Qwen/Qwen2-7B) LLM model. Compared to the [gte-Qwen1.5-7B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-instruct) model, the **gte-Qwen2-7B-instruct** model uses the same training data and training strategies during the finetuning stage, with the only difference being the upgraded base model to Qwen2-7B. Considering the improvements in the Qwen2 series models compared to the Qwen1.5 series, we can also expect consistent performance enhancements in the embedding models.
|
35 |
|
36 |
The model incorporates several key advancements:
|
37 |
|
38 |
- Integration of bidirectional attention mechanisms, enriching its contextual understanding.
|
39 |
- Instruction tuning, applied solely on the query side for streamlined efficiency
|
40 |
- Comprehensive training across a vast, multilingual text corpus spanning diverse domains and scenarios. This training leverages both weakly supervised and supervised data, ensuring the model's applicability across numerous languages and a wide array of downstream tasks.
|
41 |
-
|
42 |
-
|
43 |
## Model Information
|
44 |
-
|
45 |
-
### Overview
|
46 |
- Model Type: GTE (General Text Embeddings)
|
47 |
-
- Model Size:
|
48 |
-
- Embedding Dimension:
|
49 |
- Context Window: 131072
|
50 |
### Supported languages
|
51 |
- North America: English
|
@@ -60,18 +54,18 @@ The model incorporates several key advancements:
|
|
60 |
```
|
61 |
llama_model_loader: - kv 0: general.architecture str = qwen2
|
62 |
llama_model_loader: - kv 1: general.type str = model
|
63 |
-
llama_model_loader: - kv 2: general.name str = gte-Qwen2-
|
64 |
llama_model_loader: - kv 3: general.finetune str = instruct
|
65 |
llama_model_loader: - kv 4: general.basename str = gte-Qwen2
|
66 |
-
llama_model_loader: - kv 5: general.size_label str =
|
67 |
llama_model_loader: - kv 6: general.license str = apache-2.0
|
68 |
llama_model_loader: - kv 7: general.tags arr[str,5] = ["mteb", "sentence-transformers", "tr...
|
69 |
llama_model_loader: - kv 8: qwen2.block_count u32 = 28
|
70 |
llama_model_loader: - kv 9: qwen2.context_length u32 = 131072
|
71 |
-
llama_model_loader: - kv 10: qwen2.embedding_length u32 =
|
72 |
-
llama_model_loader: - kv 11: qwen2.feed_forward_length u32 =
|
73 |
-
llama_model_loader: - kv 12: qwen2.attention.head_count u32 =
|
74 |
-
llama_model_loader: - kv 13: qwen2.attention.head_count_kv u32 =
|
75 |
llama_model_loader: - kv 14: qwen2.rope.freq_base f32 = 1000000.000000
|
76 |
llama_model_loader: - kv 15: qwen2.attention.layer_norm_rms_epsilon f32 = 0.000001
|
77 |
llama_model_loader: - kv 16: general.file_type u32 = 7
|
@@ -87,7 +81,7 @@ llama_model_loader: - kv 25: tokenizer.ggml.add_eos_token bool
|
|
87 |
llama_model_loader: - kv 26: tokenizer.chat_template str = {% for message in messages %}{{'<|im_...
|
88 |
llama_model_loader: - kv 27: general.quantization_version u32 = 2
|
89 |
llama_model_loader: - kv 28: split.no u16 = 0
|
90 |
-
llama_model_loader: - kv 29: split.count u16 =
|
91 |
llama_model_loader: - kv 30: split.tensors.count i32 = 339
|
92 |
llama_model_loader: - type f32: 141 tensors
|
93 |
llama_model_loader: - type q8_0: 198 tensors
|
@@ -100,23 +94,23 @@ llm_load_print_meta: n_vocab = 151646
|
|
100 |
llm_load_print_meta: n_merges = 151387
|
101 |
llm_load_print_meta: vocab_only = 0
|
102 |
llm_load_print_meta: n_ctx_train = 131072
|
103 |
-
llm_load_print_meta: n_embd =
|
104 |
llm_load_print_meta: n_layer = 28
|
105 |
-
llm_load_print_meta: n_head =
|
106 |
-
llm_load_print_meta: n_head_kv =
|
107 |
llm_load_print_meta: n_rot = 128
|
108 |
llm_load_print_meta: n_swa = 0
|
109 |
llm_load_print_meta: n_embd_head_k = 128
|
110 |
llm_load_print_meta: n_embd_head_v = 128
|
111 |
-
llm_load_print_meta: n_gqa =
|
112 |
-
llm_load_print_meta: n_embd_k_gqa =
|
113 |
-
llm_load_print_meta: n_embd_v_gqa =
|
114 |
llm_load_print_meta: f_norm_eps = 0.0e+00
|
115 |
llm_load_print_meta: f_norm_rms_eps = 1.0e-06
|
116 |
llm_load_print_meta: f_clamp_kqv = 0.0e+00
|
117 |
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
|
118 |
llm_load_print_meta: f_logit_scale = 0.0e+00
|
119 |
-
llm_load_print_meta: n_ff =
|
120 |
llm_load_print_meta: n_expert = 0
|
121 |
llm_load_print_meta: n_expert_used = 0
|
122 |
llm_load_print_meta: causal attn = 1
|
@@ -132,11 +126,11 @@ llm_load_print_meta: ssm_d_inner = 0
|
|
132 |
llm_load_print_meta: ssm_d_state = 0
|
133 |
llm_load_print_meta: ssm_dt_rank = 0
|
134 |
llm_load_print_meta: ssm_dt_b_c_rms = 0
|
135 |
-
llm_load_print_meta: model type =
|
136 |
llm_load_print_meta: model ftype = Q8_0
|
137 |
-
llm_load_print_meta: model params =
|
138 |
-
llm_load_print_meta: model size =
|
139 |
-
llm_load_print_meta: general.name = gte-Qwen2-
|
140 |
llm_load_print_meta: BOS token = 151643 '<|endoftext|>'
|
141 |
llm_load_print_meta: EOS token = 151643 '<|endoftext|>'
|
142 |
llm_load_print_meta: EOT token = 151645 '<|im_end|>'
|
@@ -145,15 +139,9 @@ llm_load_print_meta: LF token = 148848 'ÄĬ'
|
|
145 |
llm_load_print_meta: EOG token = 151643 '<|endoftext|>'
|
146 |
llm_load_print_meta: EOG token = 151645 '<|im_end|>'
|
147 |
llm_load_print_meta: max token length = 256
|
148 |
-
llm_load_tensors: CPU_Mapped model buffer size = 1008.
|
149 |
-
llm_load_tensors: CPU_Mapped model buffer size =
|
150 |
-
|
151 |
-
llm_load_tensors: CPU_Mapped model buffer size = 983.77 MiB
|
152 |
-
llm_load_tensors: CPU_Mapped model buffer size = 944.73 MiB
|
153 |
-
llm_load_tensors: CPU_Mapped model buffer size = 944.76 MiB
|
154 |
-
llm_load_tensors: CPU_Mapped model buffer size = 944.74 MiB
|
155 |
-
llm_load_tensors: CPU_Mapped model buffer size = 954.29 MiB
|
156 |
-
........................................................................................
|
157 |
llama_new_context_with_model: n_seq_max = 1
|
158 |
llama_new_context_with_model: n_ctx = 131072
|
159 |
llama_new_context_with_model: n_ctx_per_seq = 131072
|
@@ -162,10 +150,10 @@ llama_new_context_with_model: n_ubatch = 512
|
|
162 |
llama_new_context_with_model: flash_attn = 0
|
163 |
llama_new_context_with_model: freq_base = 1000000.0
|
164 |
llama_new_context_with_model: freq_scale = 1
|
165 |
-
llama_kv_cache_init: CPU KV buffer size =
|
166 |
-
llama_new_context_with_model: KV self size =
|
167 |
llama_new_context_with_model: CPU output buffer size = 0.01 MiB
|
168 |
-
llama_new_context_with_model: CPU compute buffer size =
|
169 |
llama_new_context_with_model: graph nodes = 986
|
170 |
llama_new_context_with_model: graph splits = 1
|
171 |
```
|
|
|
10 |
---
|
11 |
## This version
|
12 |
|
13 |
+
This model was converted to a **8-bit GGUF format (`q8_0`)** from **[`Alibaba-NLP/gte-Qwen2-1.5B-instruct`](https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-instruct)** using `llama-quantize` built from [`llama.cpp`](https://github.com/ggerganov/llama.cpp).
|
14 |
|
15 |
Custom conversion script settings:
|
16 |
```json
|
17 |
+
"gte-Qwen2-1.5B-instruct": {
|
18 |
"model_name": "gte-Qwen2-1.5B-instruct",
|
19 |
"hq_quant_type": "f32",
|
20 |
"final_quant_type": "q8_0",
|
|
|
24 |
"numexpr_max_thread": 8
|
25 |
}
|
26 |
```
|
27 |
+
Please refer to the [original model card](https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-instruct) for more details on the unquantized model, including its metrics, which may be different (typically slightly worse) for this quantized version.
|
28 |
|
29 |
|
30 |
+
## gte-Qwen2-1.5B-instruct
|
31 |
|
32 |
+
**gte-Qwen2-1.5B-instruct** is the latest model in the gte (General Text Embedding) model family. The model is built on [Qwen2-1.5B](https://huggingface.co/Qwen/Qwen2-1.5B) LLM model and use the same training data and strategies as the [gte-Qwen2-7B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct) model.
|
|
|
|
|
33 |
|
34 |
The model incorporates several key advancements:
|
35 |
|
36 |
- Integration of bidirectional attention mechanisms, enriching its contextual understanding.
|
37 |
- Instruction tuning, applied solely on the query side for streamlined efficiency
|
38 |
- Comprehensive training across a vast, multilingual text corpus spanning diverse domains and scenarios. This training leverages both weakly supervised and supervised data, ensuring the model's applicability across numerous languages and a wide array of downstream tasks.
|
|
|
|
|
39 |
## Model Information
|
|
|
|
|
40 |
- Model Type: GTE (General Text Embeddings)
|
41 |
+
- Model Size: 1.5B
|
42 |
+
- Embedding Dimension: 1536
|
43 |
- Context Window: 131072
|
44 |
### Supported languages
|
45 |
- North America: English
|
|
|
54 |
```
|
55 |
llama_model_loader: - kv 0: general.architecture str = qwen2
|
56 |
llama_model_loader: - kv 1: general.type str = model
|
57 |
+
llama_model_loader: - kv 2: general.name str = gte-Qwen2-1.5B-instruct
|
58 |
llama_model_loader: - kv 3: general.finetune str = instruct
|
59 |
llama_model_loader: - kv 4: general.basename str = gte-Qwen2
|
60 |
+
llama_model_loader: - kv 5: general.size_label str = 1.5B
|
61 |
llama_model_loader: - kv 6: general.license str = apache-2.0
|
62 |
llama_model_loader: - kv 7: general.tags arr[str,5] = ["mteb", "sentence-transformers", "tr...
|
63 |
llama_model_loader: - kv 8: qwen2.block_count u32 = 28
|
64 |
llama_model_loader: - kv 9: qwen2.context_length u32 = 131072
|
65 |
+
llama_model_loader: - kv 10: qwen2.embedding_length u32 = 1536
|
66 |
+
llama_model_loader: - kv 11: qwen2.feed_forward_length u32 = 8960
|
67 |
+
llama_model_loader: - kv 12: qwen2.attention.head_count u32 = 12
|
68 |
+
llama_model_loader: - kv 13: qwen2.attention.head_count_kv u32 = 2
|
69 |
llama_model_loader: - kv 14: qwen2.rope.freq_base f32 = 1000000.000000
|
70 |
llama_model_loader: - kv 15: qwen2.attention.layer_norm_rms_epsilon f32 = 0.000001
|
71 |
llama_model_loader: - kv 16: general.file_type u32 = 7
|
|
|
81 |
llama_model_loader: - kv 26: tokenizer.chat_template str = {% for message in messages %}{{'<|im_...
|
82 |
llama_model_loader: - kv 27: general.quantization_version u32 = 2
|
83 |
llama_model_loader: - kv 28: split.no u16 = 0
|
84 |
+
llama_model_loader: - kv 29: split.count u16 = 2
|
85 |
llama_model_loader: - kv 30: split.tensors.count i32 = 339
|
86 |
llama_model_loader: - type f32: 141 tensors
|
87 |
llama_model_loader: - type q8_0: 198 tensors
|
|
|
94 |
llm_load_print_meta: n_merges = 151387
|
95 |
llm_load_print_meta: vocab_only = 0
|
96 |
llm_load_print_meta: n_ctx_train = 131072
|
97 |
+
llm_load_print_meta: n_embd = 1536
|
98 |
llm_load_print_meta: n_layer = 28
|
99 |
+
llm_load_print_meta: n_head = 12
|
100 |
+
llm_load_print_meta: n_head_kv = 2
|
101 |
llm_load_print_meta: n_rot = 128
|
102 |
llm_load_print_meta: n_swa = 0
|
103 |
llm_load_print_meta: n_embd_head_k = 128
|
104 |
llm_load_print_meta: n_embd_head_v = 128
|
105 |
+
llm_load_print_meta: n_gqa = 6
|
106 |
+
llm_load_print_meta: n_embd_k_gqa = 256
|
107 |
+
llm_load_print_meta: n_embd_v_gqa = 256
|
108 |
llm_load_print_meta: f_norm_eps = 0.0e+00
|
109 |
llm_load_print_meta: f_norm_rms_eps = 1.0e-06
|
110 |
llm_load_print_meta: f_clamp_kqv = 0.0e+00
|
111 |
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
|
112 |
llm_load_print_meta: f_logit_scale = 0.0e+00
|
113 |
+
llm_load_print_meta: n_ff = 8960
|
114 |
llm_load_print_meta: n_expert = 0
|
115 |
llm_load_print_meta: n_expert_used = 0
|
116 |
llm_load_print_meta: causal attn = 1
|
|
|
126 |
llm_load_print_meta: ssm_d_state = 0
|
127 |
llm_load_print_meta: ssm_dt_rank = 0
|
128 |
llm_load_print_meta: ssm_dt_b_c_rms = 0
|
129 |
+
llm_load_print_meta: model type = 1.5B
|
130 |
llm_load_print_meta: model ftype = Q8_0
|
131 |
+
llm_load_print_meta: model params = 1.78 B
|
132 |
+
llm_load_print_meta: model size = 1.76 GiB (8.50 BPW)
|
133 |
+
llm_load_print_meta: general.name = gte-Qwen2-1.5B-instruct
|
134 |
llm_load_print_meta: BOS token = 151643 '<|endoftext|>'
|
135 |
llm_load_print_meta: EOS token = 151643 '<|endoftext|>'
|
136 |
llm_load_print_meta: EOT token = 151645 '<|im_end|>'
|
|
|
139 |
llm_load_print_meta: EOG token = 151643 '<|endoftext|>'
|
140 |
llm_load_print_meta: EOG token = 151645 '<|im_end|>'
|
141 |
llm_load_print_meta: max token length = 256
|
142 |
+
llm_load_tensors: CPU_Mapped model buffer size = 1008.90 MiB
|
143 |
+
llm_load_tensors: CPU_Mapped model buffer size = 791.29 MiB
|
144 |
+
............................................................................
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
llama_new_context_with_model: n_seq_max = 1
|
146 |
llama_new_context_with_model: n_ctx = 131072
|
147 |
llama_new_context_with_model: n_ctx_per_seq = 131072
|
|
|
150 |
llama_new_context_with_model: flash_attn = 0
|
151 |
llama_new_context_with_model: freq_base = 1000000.0
|
152 |
llama_new_context_with_model: freq_scale = 1
|
153 |
+
llama_kv_cache_init: CPU KV buffer size = 3584.00 MiB
|
154 |
+
llama_new_context_with_model: KV self size = 3584.00 MiB, K (f16): 1792.00 MiB, V (f16): 1792.00 MiB
|
155 |
llama_new_context_with_model: CPU output buffer size = 0.01 MiB
|
156 |
+
llama_new_context_with_model: CPU compute buffer size = 3340.01 MiB
|
157 |
llama_new_context_with_model: graph nodes = 986
|
158 |
llama_new_context_with_model: graph splits = 1
|
159 |
```
|