missbaj commited on
Commit
318689f
·
verified ·
1 Parent(s): 655041e
Files changed (1) hide show
  1. app.py +83 -0
app.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import gradio as gr
3
+ import requests
4
+ import pandas as pd
5
+ import plotly.graph_objs as go
6
+ from transformers import pipeline
7
+
8
+ # Load ChatGPT model (adjust to use a model supported in Hugging Face Spaces)
9
+ chatgpt = pipeline("text-generation", model="gpt2") # Change "gpt2" to "chatgpt" if available
10
+
11
+ # Function to fetch and process data from GPT model
12
+ def fetch_and_process_data(prompt):
13
+ response = chatgpt(prompt, max_length=200, do_sample=True)[0]['generated_text']
14
+ return response
15
+
16
+ # Function to fetch historical price data from CoinGecko
17
+ def fetch_historical_data(coin_id, from_timestamp, to_timestamp):
18
+ url = f"https://api.coingecko.com/api/v3/coins/{coin_id}/market_chart/range?vs_currency=usd&from={from_timestamp}&to={to_timestamp}"
19
+ response = requests.get(url)
20
+ if response.status_code == 200:
21
+ data = response.json()
22
+ prices = data['prices']
23
+ return prices
24
+ else:
25
+ return f"Error fetching historical data for {coin_id}"
26
+
27
+ # Function to convert dates to timestamps
28
+ def date_to_timestamp(date_str):
29
+ return int(pd.Timestamp(date_str).timestamp())
30
+
31
+ # Function to plot historical prices using Plotly
32
+ def plot_historical_prices(coin_name, from_date, to_date):
33
+ from_timestamp = date_to_timestamp(from_date)
34
+ to_timestamp = date_to_timestamp(to_date)
35
+
36
+ prices = fetch_historical_data(coin_name, from_timestamp, to_timestamp)
37
+
38
+ if isinstance(prices, str): # In case of error
39
+ return prices
40
+
41
+ df = pd.DataFrame(prices, columns=['timestamp', 'price'])
42
+ df['date'] = pd.to_datetime(df['timestamp'], unit='ms')
43
+
44
+ fig = go.Figure()
45
+ fig.add_trace(go.Scatter(x=df['date'], y=df['price'], mode='lines', name=coin_name))
46
+ fig.update_layout(title=f'{coin_name.capitalize()} Prices from {from_date} to {to_date}', xaxis_title='Date', yaxis_title='Price (USD)')
47
+ return fig
48
+
49
+ # Top 100 Cryptocurrencies (by CoinGecko IDs)
50
+ top_100_cryptos = [
51
+ 'bitcoin', 'ethereum', 'binancecoin', 'ripple', 'solana', 'cardano', 'dogecoin', 'polygon', 'polkadot', 'tron',
52
+ # Add more top coins as necessary
53
+ ]
54
+
55
+ # Function to display both ChatGPT response and price chart
56
+ def combined_analysis(prompt, coin_name, from_date, to_date):
57
+ # Fetch ChatGPT response
58
+ chatgpt_response = fetch_and_process_data(prompt)
59
+
60
+ # Fetch and plot historical price data
61
+ price_chart = plot_historical_prices(coin_name, from_date, to_date)
62
+
63
+ return chatgpt_response, price_chart
64
+
65
+ # Create Gradio Interface
66
+ interface = gr.Interface(
67
+ fn=combined_analysis,
68
+ inputs=[
69
+ gr.Textbox(label="Enter a prompt for ChatGPT"),
70
+ gr.Dropdown(choices=top_100_cryptos, label="Select Cryptocurrency"),
71
+ gr.Textbox(value="2024-01-01", label="From Date (YYYY-MM-DD)"),
72
+ gr.Textbox(value="2025-12-31", label="To Date (YYYY-MM-DD)")
73
+ ],
74
+ outputs=[
75
+ gr.Textbox(label="ChatGPT Response"),
76
+ gr.Plot(label="Cryptocurrency Price Chart")
77
+ ],
78
+ title="ChatGPT and Cryptocurrency Analysis",
79
+ description="This tool provides real-time cryptocurrency analysis and allows you to interact with ChatGPT for insights."
80
+ )
81
+
82
+ # Launch Gradio app
83
+ interface.launch(server_name="0.0.0.0")