Update model card
Browse files
README.md
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- de
|
4 |
+
tags:
|
5 |
+
- cross-encoder
|
6 |
+
widget:
|
7 |
+
- text: "Was sind Lamas. Das Lama (Lama glama) ist eine Art der Kamele. Es ist in den südamerikanischen Anden verbreitet und eine vom Guanako abstammende Haustierform."
|
8 |
+
example_title: "Example Query / Paragraph"
|
9 |
+
license: apache-2.0
|
10 |
+
metrics:
|
11 |
+
- Rouge-Score
|
12 |
+
---
|
13 |
+
# cross-encoder-mmarco-german-distilbert-base
|
14 |
+
|
15 |
+
## Model description:
|
16 |
+
This model is a fine-tuned [cross-encoder](https://www.sbert.net/examples/training/cross-encoder/README.html) on the [MMARCO dataset](https://huggingface.co/datasets/unicamp-dl/mmarco) which is the machine translated version of the MS MARCO dataset.
|
17 |
+
As base model for the fine-tuning we use [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased)
|
18 |
+
|
19 |
+
Model input samples are tuples of the following format, either
|
20 |
+
`<query, positive_paragraph>` assigned to 1 or `<query, negative_paragraph>` assigned to 0.
|
21 |
+
|
22 |
+
The model was trained for 1 epoch.
|
23 |
+
|
24 |
+
## Model usage
|
25 |
+
The cross-encoder model can be used like this:
|
26 |
+
|
27 |
+
```
|
28 |
+
from sentence_transformers import CrossEncoder
|
29 |
+
model = CrossEncoder('model_name')
|
30 |
+
scores = model.predict([('Query 1', 'Paragraph 1'), ('Query 2', 'Paragraph 2')])
|
31 |
+
```
|
32 |
+
|
33 |
+
The model will predict scores for the pairs `('Query 1', 'Paragraph 1')` and `('Query 2', 'Paragraph 2')`.
|
34 |
+
|
35 |
+
For more details on the usage of the cross-encoder models have a look into the [Sentence-Transformers](https://www.sbert.net/)
|
36 |
+
|
37 |
+
## Model Performance:
|
38 |
+
Model evaluation was done on 2000 evaluation paragraphs of the dataset.
|
39 |
+
|
40 |
+
| Accuracy | F1-Score | Precision | Recall |
|
41 |
+
| --- | --- | --- | --- |
|
42 |
+
| 89.70 | 86.82 | 86.82 | 93.50 |
|