File size: 1,285 Bytes
fa3b80c 66d17f5 fa3b80c 66d17f5 fa3b80c 66d17f5 fa3b80c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
---
license: apache-2.0
license_link: https://huggingface.co/huihui-ai/Qwen2.5-Coder-32B-Instruct-abliterate/blob/main/LICENSE
language:
- en
base_model: huihui-ai/Qwen2.5-Coder-32B-Instruct-abliterated
pipeline_tag: text-generation
library_name: transformers
tags:
- code
- codeqwen
- chat
- qwen
- qwen-coder
- abliterated
- uncensored
- mlx
- mlx-my-repo
---
# mlx-community/Qwen2.5-Coder-32B-Instruct-abliterated-4bit
The Model [mlx-community/Qwen2.5-Coder-32B-Instruct-abliterated-4bit](https://huggingface.co/mlx-community/Qwen2.5-Coder-32B-Instruct-abliterated-4bit) was converted to MLX format from [huihui-ai/Qwen2.5-Coder-32B-Instruct-abliterated](https://huggingface.co/huihui-ai/Qwen2.5-Coder-32B-Instruct-abliterated) using mlx-lm version **0.20.5**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Qwen2.5-Coder-32B-Instruct-abliterated-4bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```
|