File size: 1,285 Bytes
fa3b80c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66d17f5
fa3b80c
66d17f5
fa3b80c
 
 
 
 
 
 
 
 
 
66d17f5
fa3b80c
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
---
license: apache-2.0
license_link: https://huggingface.co/huihui-ai/Qwen2.5-Coder-32B-Instruct-abliterate/blob/main/LICENSE
language:
- en
base_model: huihui-ai/Qwen2.5-Coder-32B-Instruct-abliterated
pipeline_tag: text-generation
library_name: transformers
tags:
- code
- codeqwen
- chat
- qwen
- qwen-coder
- abliterated
- uncensored
- mlx
- mlx-my-repo
---

# mlx-community/Qwen2.5-Coder-32B-Instruct-abliterated-4bit

The Model [mlx-community/Qwen2.5-Coder-32B-Instruct-abliterated-4bit](https://huggingface.co/mlx-community/Qwen2.5-Coder-32B-Instruct-abliterated-4bit) was converted to MLX format from [huihui-ai/Qwen2.5-Coder-32B-Instruct-abliterated](https://huggingface.co/huihui-ai/Qwen2.5-Coder-32B-Instruct-abliterated) using mlx-lm version **0.20.5**.

## Use with mlx

```bash
pip install mlx-lm
```

```python
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/Qwen2.5-Coder-32B-Instruct-abliterated-4bit")

prompt="hello"

if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
```