File size: 1,168 Bytes
09e8b4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
---
language:
- en
- ja
license: apache-2.0
library_name: transformers
tags:
- mlx
datasets:
- databricks/databricks-dolly-15k
- llm-jp/databricks-dolly-15k-ja
- llm-jp/oasst1-21k-en
- llm-jp/oasst1-21k-ja
- llm-jp/oasst2-33k-en
- llm-jp/oasst2-33k-ja
programming_language:
- C
- C++
- C#
- Go
- Java
- JavaScript
- Lua
- PHP
- Python
- Ruby
- Rust
- Scala
- TypeScript
pipeline_tag: text-generation
inference: false
---

# mlx-community/llm-jp-13b-instruct-full-ac_001_16x-dolly-ichikara_004_001_single-oasst-oasst2-v2.0
This model was converted to MLX format from [`llm-jp/llm-jp-13b-instruct-full-ac_001_16x-dolly-ichikara_004_001_single-oasst-oasst2-v2.0`]() using mlx-lm version **0.12.0**.
Refer to the [original model card](https://huggingface.co/llm-jp/llm-jp-13b-instruct-full-ac_001_16x-dolly-ichikara_004_001_single-oasst-oasst2-v2.0) for more details on the model.
## Use with mlx

```bash
pip install mlx-lm
```

```python
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/llm-jp-13b-instruct-full-ac_001_16x-dolly-ichikara_004_001_single-oasst-oasst2-v2.0")
response = generate(model, tokenizer, prompt="hello", verbose=True)
```