File size: 1,218 Bytes
8c5ef31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
---
license: apache-2.0
language:
- en
tags:
- chat
- mlx
pipeline_tag: text-generation
library_name: transformers
datasets:
- anthracite-org/c2_logs_32k_llama3_qwen2_v1.2
- anthracite-org/kalo-opus-instruct-22k-no-refusal
- lodrick-the-lafted/kalo-opus-instruct-3k-filtered
- anthracite-org/nopm_claude_writing_fixed
- anthracite-org/kalo_opus_misc_240827
- anthracite-org/kalo_misc_part2
base_model: anthracite-org/magnum-v4-72b
---

# mlx-community/magnum-v4-72b-4bit

The Model [mlx-community/magnum-v4-72b-4bit](https://huggingface.co/mlx-community/magnum-v4-72b-4bit) was
converted to MLX format from [anthracite-org/magnum-v4-72b](https://huggingface.co/anthracite-org/magnum-v4-72b)
using mlx-lm version **0.20.4**.

## Use with mlx

```bash
pip install mlx-lm
```

```python
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/magnum-v4-72b-4bit")

prompt="hello"

if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
```