File size: 1,218 Bytes
682d065 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
---
license: apache-2.0
language:
- en
tags:
- chat
- mlx
pipeline_tag: text-generation
library_name: transformers
datasets:
- anthracite-org/c2_logs_32k_llama3_qwen2_v1.2
- anthracite-org/kalo-opus-instruct-22k-no-refusal
- lodrick-the-lafted/kalo-opus-instruct-3k-filtered
- anthracite-org/nopm_claude_writing_fixed
- anthracite-org/kalo_opus_misc_240827
- anthracite-org/kalo_misc_part2
base_model: anthracite-org/magnum-v4-72b
---
# mlx-community/magnum-v4-72b-4bit
The Model [mlx-community/magnum-v4-72b-4bit](https://huggingface.co/mlx-community/magnum-v4-72b-4bit) was
converted to MLX format from [anthracite-org/magnum-v4-72b](https://huggingface.co/anthracite-org/magnum-v4-72b)
using mlx-lm version **0.20.4**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/magnum-v4-72b-4bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```
|