Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 265.15 +/- 63.76
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb03ccf6440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb03ccf64d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb03ccf6560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb03ccf65f0>", "_build": "<function ActorCriticPolicy._build at 0x7fb03ccf6680>", "forward": "<function ActorCriticPolicy.forward at 0x7fb03ccf6710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb03ccf67a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb03ccf6830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb03ccf68c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb03ccf6950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb03ccf69e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb03cd3e990>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651765267.4665916, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFP2db5gdrY+UuwPP7dror6ZKqi8TtaUPgAAAAAAAAAAzRBpvVvzgbyXkkU9xbCmPMWN4b1FSIU9AACAPwAAgD9mrnQ7wzU5uqV5ubMwsfWvVuW6O+YqnTMAAIA/AACAPzrMCb47wDA/rm4bPQR3Br+TLoi9uzx5vAAAAAAAAAAA7ZUcvnaB7T7G7Zy8zxzhvglAC77OCpi7AAAAAAAAAACa42o9g20yvNN1P74QjCG+TwlCPWoS3z0AAAAAAACAP5pVL77i2Yc/3fghvl9WJb+HPjK+rfJJPAAAAAAAAAAAgNMFveHWibr+DL24Krsttkwc8DpbHt43AACAPwAAgD/NeJm79mQ1un7XB7UAYwivvD1HOj73ajQAAIA/AACAP2agV7wgjoA+mB/XvMwkor44d5O9X6IWvQAAAAAAAAAAzYk7PZ8Prz9/8D4/W9rFvovJ4bwtwl67AAAAAAAAAADNLOO94P+MPwB93r1uMha//qjqvTCIf7wAAAAAAAAAAEa/ST5Medk+2ibSvlfxzb6m89C94iivvQAAAAAAAAAAs0khPUNcJrwGKKi8YgknO2knkj3OGCy8AACAPwAAgD8AREI9+fMQP2LPlL0FvQK/nIUSPRUoJL0AAAAAAAAAABpNBb0pOHu6C+xbsjUo5DCtEEK7eWm0MgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBRTq6WMdckCUhpRSlIwBbJRL0IwBdJRHQKL0QPbO/tZ1fZQoaAZoCWgPQwi7YduiTGpxQJSGlFKUaBVLzGgWR0Ci9EUEgW8AdX2UKGgGaAloD0MIvW2mQryZc0CUhpRSlGgVS9toFkdAovSMrPMSsnV9lChoBmgJaA9DCIXv/Q3aolJAlIaUUpRoFUvEaBZHQKL0rgtvn8t1fZQoaAZoCWgPQwgysI7jR/RyQJSGlFKUaBVL0GgWR0Ci9LGL9/BndX2UKGgGaAloD0MIzlFHx1V9b0CUhpRSlGgVS99oFkdAovTy9K28ZnV9lChoBmgJaA9DCPSltz+Xd3BAlIaUUpRoFUvVaBZHQKL08ZCOWB11fZQoaAZoCWgPQwgpzeZxWANyQJSGlFKUaBVNJQFoFkdAovT5JNCZ4XV9lChoBmgJaA9DCPfoDfeR9W9AlIaUUpRoFUvcaBZHQKL1WdnTRY11fZQoaAZoCWgPQwifqkIDsdRyQJSGlFKUaBVL3mgWR0Ci9byGahHtdX2UKGgGaAloD0MI5e5zfDT8cECUhpRSlGgVS9doFkdAovXvLV4HHHV9lChoBmgJaA9DCDxO0ZFcM3NAlIaUUpRoFUvqaBZHQKL2I7HQyAR1fZQoaAZoCWgPQwjTbB6HwQZvQJSGlFKUaBVL1GgWR0Ci9sCdjG1hdX2UKGgGaAloD0MIBTOmYM0HcUCUhpRSlGgVS+5oFkdAovcEhib2DnV9lChoBmgJaA9DCK2kFd+QH3BAlIaUUpRoFUv7aBZHQKL3G3YL9dh1fZQoaAZoCWgPQwgMHxFTIvtwQJSGlFKUaBVLwGgWR0Ci90sxfv4NdX2UKGgGaAloD0MIQx7BjRR2cUCUhpRSlGgVTRMBaBZHQKL3luDzyz51fZQoaAZoCWgPQwjEtdrDHmhwQJSGlFKUaBVL2GgWR0Ci9/P2PDHfdX2UKGgGaAloD0MIaXOc28S0ckCUhpRSlGgVS9RoFkdAovgEsMAmzHV9lChoBmgJaA9DCOAT61R5M3BAlIaUUpRoFUvpaBZHQKL39v99+gF1fZQoaAZoCWgPQwgnaJPDJ4JwQJSGlFKUaBVL5GgWR0Ci+ESgXdj5dX2UKGgGaAloD0MIoIuGjIcnckCUhpRSlGgVS8FoFkdAovhu67NB4XV9lChoBmgJaA9DCAzohTsXP3BAlIaUUpRoFUviaBZHQKL4fsE7nxJ1fZQoaAZoCWgPQwi6ZYf4R39zQJSGlFKUaBVL4mgWR0Ci+IYlIEr5dX2UKGgGaAloD0MID4EjgcatcUCUhpRSlGgVTRcBaBZHQKL5TgwXZXd1fZQoaAZoCWgPQwh+GvfmN1twQJSGlFKUaBVL52gWR0Ci+WyRSxZ/dX2UKGgGaAloD0MIkIgpkcTjbkCUhpRSlGgVS95oFkdAovl84iosI3V9lChoBmgJaA9DCFhWmpRC73BAlIaUUpRoFUveaBZHQKL5sTxoZht1fZQoaAZoCWgPQwhaR1UTRN1QQJSGlFKUaBVLvWgWR0CjCU/pdKNAdX2UKGgGaAloD0MIQN8WLBVEcUCUhpRSlGgVS+FoFkdAownWyAxzrHV9lChoBmgJaA9DCF2pZ0GoB3JAlIaUUpRoFUv0aBZHQKMJ5hb4agp1fZQoaAZoCWgPQwhDVyJQfTpwQJSGlFKUaBVL1WgWR0CjCenFHavidX2UKGgGaAloD0MISFFn7qGIckCUhpRSlGgVS+FoFkdAowpkurZJ1HV9lChoBmgJaA9DCCL+YUsP325AlIaUUpRoFUvOaBZHQKMKc8Swnpl1fZQoaAZoCWgPQwgTnPpA8k5IQJSGlFKUaBVLu2gWR0CjCrl2eQMhdX2UKGgGaAloD0MI4xx1dFyWcECUhpRSlGgVS+poFkdAowroQSSNfnV9lChoBmgJaA9DCOy/zk2bx3JAlIaUUpRoFUvxaBZHQKMLE32mHgx1fZQoaAZoCWgPQwi6EoHqn6ByQJSGlFKUaBVL0GgWR0CjCwm4ZuQ7dX2UKGgGaAloD0MIU0FF1a+kTECUhpRSlGgVS6JoFkdAowtPljmSyXV9lChoBmgJaA9DCAlupGyRi3FAlIaUUpRoFUvtaBZHQKMLbQizLOl1fZQoaAZoCWgPQwhdbFophGNxQJSGlFKUaBVL/2gWR0CjC4X2dupCdX2UKGgGaAloD0MIsYo3Mo/9cECUhpRSlGgVS8VoFkdAowvESsbNr3V9lChoBmgJaA9DCGajc35KoXBAlIaUUpRoFUvoaBZHQKMMKhwEQoV1fZQoaAZoCWgPQwjgnudPG41wQJSGlFKUaBVL7WgWR0CjDKIxgy/LdX2UKGgGaAloD0MI+g5+4oBocUCUhpRSlGgVS+JoFkdAowzbSkTHsHV9lChoBmgJaA9DCBNhw9OrnG9AlIaUUpRoFUvhaBZHQKMNXZmqYJF1fZQoaAZoCWgPQwgjaqLPh4pyQJSGlFKUaBVL42gWR0CjDXb7TDwZdX2UKGgGaAloD0MIB5W4jrFIc0CUhpRSlGgVTQABaBZHQKMN+CL/CIl1fZQoaAZoCWgPQwjAQubKoH9xQJSGlFKUaBVLymgWR0CjDe7Y02tMdX2UKGgGaAloD0MI3NeBc0aqcUCUhpRSlGgVS9NoFkdAow5wS+QEIXV9lChoBmgJaA9DCNwODYuRd3FAlIaUUpRoFUvWaBZHQKMOc9AX2uh1fZQoaAZoCWgPQwjLZaNzfjZvQJSGlFKUaBVL/WgWR0CjDoCzLOiWdX2UKGgGaAloD0MIYTjXMEPLcUCUhpRSlGgVS89oFkdAow6gTZg5R3V9lChoBmgJaA9DCPzG157ZOXBAlIaUUpRoFUvdaBZHQKMO+3F1jiJ1fZQoaAZoCWgPQwhsXP+uT8FyQJSGlFKUaBVLw2gWR0CjDvQP7N0OdX2UKGgGaAloD0MI1QloIqxbckCUhpRSlGgVTSUBaBZHQKMPFuyeI2x1fZQoaAZoCWgPQwhRbAVNy3h0QJSGlFKUaBVNDAFoFkdAow8uz2OAAnV9lChoBmgJaA9DCI1D/S4sE3FAlIaUUpRoFUvmaBZHQKMPPCuU2UB1fZQoaAZoCWgPQwjGhQMhmZZxQJSGlFKUaBVLymgWR0CjD3dHMEA6dX2UKGgGaAloD0MIu5unOmRUb0CUhpRSlGgVS9VoFkdAoxBL4etCA3V9lChoBmgJaA9DCBlYx/HDrHBAlIaUUpRoFUvtaBZHQKMQdZX+2mZ1fZQoaAZoCWgPQwi7XpoiALxxQJSGlFKUaBVL2WgWR0CjENqCQLeAdX2UKGgGaAloD0MIc9u+R/1/TkCUhpRSlGgVS6NoFkdAoxEHRLK3eHV9lChoBmgJaA9DCCZV200wuHFAlIaUUpRoFUvjaBZHQKMRHyy2QXB1fZQoaAZoCWgPQwgnbD8ZIy5yQJSGlFKUaBVL2mgWR0CjEXJi7TUidX2UKGgGaAloD0MI0lRP5l9ZckCUhpRSlGgVS+1oFkdAoxG4D9wWFnV9lChoBmgJaA9DCEs9C0I5cHFAlIaUUpRoFUvHaBZHQKMRyarmyPd1fZQoaAZoCWgPQwitoj80s1lxQJSGlFKUaBVL1WgWR0CjEeDvmYBvdX2UKGgGaAloD0MI2uGvydodcUCUhpRSlGgVS8FoFkdAoxIHDR+jM3V9lChoBmgJaA9DCBWRYRWv8XNAlIaUUpRoFUvkaBZHQKMSDqCYkVx1fZQoaAZoCWgPQwj61LFKqR5xQJSGlFKUaBVL9mgWR0CjEtaoddVvdX2UKGgGaAloD0MIFVJ+Ui30cUCUhpRSlGgVS+toFkdAoxLn24/eL3V9lChoBmgJaA9DCOElOPWB8W9AlIaUUpRoFUvWaBZHQKMS42uPmxN1fZQoaAZoCWgPQwgMO4xJPwZzQJSGlFKUaBVL5GgWR0CjEtvsZ5zHdX2UKGgGaAloD0MI/MIrSR5bc0CUhpRSlGgVS/5oFkdAoxMd+/gzg3V9lChoBmgJaA9DCPZdEfxvFHJAlIaUUpRoFUvcaBZHQKMTxZ1V5rx1fZQoaAZoCWgPQwiZoIZvYdByQJSGlFKUaBVLuWgWR0CjE/zmwJPZdX2UKGgGaAloD0MIMXvZdprIcECUhpRSlGgVS+9oFkdAoxQ1Q9A5aXV9lChoBmgJaA9DCLN8XYZ/83BAlIaUUpRoFUvfaBZHQKMUVHG0eEJ1fZQoaAZoCWgPQwhu+N10y8hLQJSGlFKUaBVLpmgWR0CjFJhgVoHtdX2UKGgGaAloD0MIhc/WwcGXbkCUhpRSlGgVS9ZoFkdAoxS+VeKKpHV9lChoBmgJaA9DCGn9LQE4d3NAlIaUUpRoFUv0aBZHQKMUy+UyHmB1fZQoaAZoCWgPQwiBmIQLectyQJSGlFKUaBVLzGgWR0CjFOqRlpXZdX2UKGgGaAloD0MI8rT8wJWYckCUhpRSlGgVS95oFkdAoxVwwGnn+3V9lChoBmgJaA9DCLIOR1ep9nBAlIaUUpRoFUvmaBZHQKMVascQyyl1fZQoaAZoCWgPQwhG0JhJ1MdxQJSGlFKUaBVLzGgWR0CjFf0r9VFQdX2UKGgGaAloD0MIGk6Zm++ic0CUhpRSlGgVTRUBaBZHQKMV/MajveB1fZQoaAZoCWgPQwhEigESTfRwQJSGlFKUaBVL2GgWR0CjFmFiSaE0dX2UKGgGaAloD0MI6j2V096dc0CUhpRSlGgVS/doFkdAoxaonpjc23V9lChoBmgJaA9DCI1eDVDasHNAlIaUUpRoFUv4aBZHQKMWn6OYIB11fZQoaAZoCWgPQwhxVG6i1utxQJSGlFKUaBVNEwFoFkdAoxcIHcDbJ3V9lChoBmgJaA9DCP/LtWiBfW9AlIaUUpRoFUvLaBZHQKMXYSeyzHF1fZQoaAZoCWgPQwg7pu7KLu5yQJSGlFKUaBVL9GgWR0CjF5PKlpGndX2UKGgGaAloD0MIQBU3brFjckCUhpRSlGgVS89oFkdAoxeSl54W13V9lChoBmgJaA9DCL9IaMu5LHBAlIaUUpRoFUv9aBZHQKMX9NcnmaJ1fZQoaAZoCWgPQwgeFmpNM+tyQJSGlFKUaBVL3GgWR0CjGA+f7JnydX2UKGgGaAloD0MI58Qe2ocDcUCUhpRSlGgVS8loFkdAoxgUg0TDfnV9lChoBmgJaA9DCMcS1sYY/HFAlIaUUpRoFUvoaBZHQKMYXu+AVfx1fZQoaAZoCWgPQwgvNq0UAi5xQJSGlFKUaBVL5GgWR0CjGFyIHkcTdX2UKGgGaAloD0MIP6vMlBYXckCUhpRSlGgVS/BoFkdAoxkkCFK02XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b6708775f90ec5f8974fcd08423fbf710d4d42c6d6f853bf98f24702d4c32f43
|
3 |
+
size 143994
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb03ccf6440>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb03ccf64d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb03ccf6560>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb03ccf65f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fb03ccf6680>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fb03ccf6710>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb03ccf67a0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fb03ccf6830>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb03ccf68c0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb03ccf6950>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb03ccf69e0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fb03cd3e990>"
|
20 |
+
},
|
21 |
+
"verbose": 0,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 2015232,
|
46 |
+
"_total_timesteps": 2000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651765267.4665916,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFP2db5gdrY+UuwPP7dror6ZKqi8TtaUPgAAAAAAAAAAzRBpvVvzgbyXkkU9xbCmPMWN4b1FSIU9AACAPwAAgD9mrnQ7wzU5uqV5ubMwsfWvVuW6O+YqnTMAAIA/AACAPzrMCb47wDA/rm4bPQR3Br+TLoi9uzx5vAAAAAAAAAAA7ZUcvnaB7T7G7Zy8zxzhvglAC77OCpi7AAAAAAAAAACa42o9g20yvNN1P74QjCG+TwlCPWoS3z0AAAAAAACAP5pVL77i2Yc/3fghvl9WJb+HPjK+rfJJPAAAAAAAAAAAgNMFveHWibr+DL24Krsttkwc8DpbHt43AACAPwAAgD/NeJm79mQ1un7XB7UAYwivvD1HOj73ajQAAIA/AACAP2agV7wgjoA+mB/XvMwkor44d5O9X6IWvQAAAAAAAAAAzYk7PZ8Prz9/8D4/W9rFvovJ4bwtwl67AAAAAAAAAADNLOO94P+MPwB93r1uMha//qjqvTCIf7wAAAAAAAAAAEa/ST5Medk+2ibSvlfxzb6m89C94iivvQAAAAAAAAAAs0khPUNcJrwGKKi8YgknO2knkj3OGCy8AACAPwAAgD8AREI9+fMQP2LPlL0FvQK/nIUSPRUoJL0AAAAAAAAAABpNBb0pOHu6C+xbsjUo5DCtEEK7eWm0MgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.007616000000000067,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVJRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBRTq6WMdckCUhpRSlIwBbJRL0IwBdJRHQKL0QPbO/tZ1fZQoaAZoCWgPQwi7YduiTGpxQJSGlFKUaBVLzGgWR0Ci9EUEgW8AdX2UKGgGaAloD0MIvW2mQryZc0CUhpRSlGgVS9toFkdAovSMrPMSsnV9lChoBmgJaA9DCIXv/Q3aolJAlIaUUpRoFUvEaBZHQKL0rgtvn8t1fZQoaAZoCWgPQwgysI7jR/RyQJSGlFKUaBVL0GgWR0Ci9LGL9/BndX2UKGgGaAloD0MIzlFHx1V9b0CUhpRSlGgVS99oFkdAovTy9K28ZnV9lChoBmgJaA9DCPSltz+Xd3BAlIaUUpRoFUvVaBZHQKL08ZCOWB11fZQoaAZoCWgPQwgpzeZxWANyQJSGlFKUaBVNJQFoFkdAovT5JNCZ4XV9lChoBmgJaA9DCPfoDfeR9W9AlIaUUpRoFUvcaBZHQKL1WdnTRY11fZQoaAZoCWgPQwifqkIDsdRyQJSGlFKUaBVL3mgWR0Ci9byGahHtdX2UKGgGaAloD0MI5e5zfDT8cECUhpRSlGgVS9doFkdAovXvLV4HHHV9lChoBmgJaA9DCDxO0ZFcM3NAlIaUUpRoFUvqaBZHQKL2I7HQyAR1fZQoaAZoCWgPQwjTbB6HwQZvQJSGlFKUaBVL1GgWR0Ci9sCdjG1hdX2UKGgGaAloD0MIBTOmYM0HcUCUhpRSlGgVS+5oFkdAovcEhib2DnV9lChoBmgJaA9DCK2kFd+QH3BAlIaUUpRoFUv7aBZHQKL3G3YL9dh1fZQoaAZoCWgPQwgMHxFTIvtwQJSGlFKUaBVLwGgWR0Ci90sxfv4NdX2UKGgGaAloD0MIQx7BjRR2cUCUhpRSlGgVTRMBaBZHQKL3luDzyz51fZQoaAZoCWgPQwjEtdrDHmhwQJSGlFKUaBVL2GgWR0Ci9/P2PDHfdX2UKGgGaAloD0MIaXOc28S0ckCUhpRSlGgVS9RoFkdAovgEsMAmzHV9lChoBmgJaA9DCOAT61R5M3BAlIaUUpRoFUvpaBZHQKL39v99+gF1fZQoaAZoCWgPQwgnaJPDJ4JwQJSGlFKUaBVL5GgWR0Ci+ESgXdj5dX2UKGgGaAloD0MIoIuGjIcnckCUhpRSlGgVS8FoFkdAovhu67NB4XV9lChoBmgJaA9DCAzohTsXP3BAlIaUUpRoFUviaBZHQKL4fsE7nxJ1fZQoaAZoCWgPQwi6ZYf4R39zQJSGlFKUaBVL4mgWR0Ci+IYlIEr5dX2UKGgGaAloD0MID4EjgcatcUCUhpRSlGgVTRcBaBZHQKL5TgwXZXd1fZQoaAZoCWgPQwh+GvfmN1twQJSGlFKUaBVL52gWR0Ci+WyRSxZ/dX2UKGgGaAloD0MIkIgpkcTjbkCUhpRSlGgVS95oFkdAovl84iosI3V9lChoBmgJaA9DCFhWmpRC73BAlIaUUpRoFUveaBZHQKL5sTxoZht1fZQoaAZoCWgPQwhaR1UTRN1QQJSGlFKUaBVLvWgWR0CjCU/pdKNAdX2UKGgGaAloD0MIQN8WLBVEcUCUhpRSlGgVS+FoFkdAownWyAxzrHV9lChoBmgJaA9DCF2pZ0GoB3JAlIaUUpRoFUv0aBZHQKMJ5hb4agp1fZQoaAZoCWgPQwhDVyJQfTpwQJSGlFKUaBVL1WgWR0CjCenFHavidX2UKGgGaAloD0MISFFn7qGIckCUhpRSlGgVS+FoFkdAowpkurZJ1HV9lChoBmgJaA9DCCL+YUsP325AlIaUUpRoFUvOaBZHQKMKc8Swnpl1fZQoaAZoCWgPQwgTnPpA8k5IQJSGlFKUaBVLu2gWR0CjCrl2eQMhdX2UKGgGaAloD0MI4xx1dFyWcECUhpRSlGgVS+poFkdAowroQSSNfnV9lChoBmgJaA9DCOy/zk2bx3JAlIaUUpRoFUvxaBZHQKMLE32mHgx1fZQoaAZoCWgPQwi6EoHqn6ByQJSGlFKUaBVL0GgWR0CjCwm4ZuQ7dX2UKGgGaAloD0MIU0FF1a+kTECUhpRSlGgVS6JoFkdAowtPljmSyXV9lChoBmgJaA9DCAlupGyRi3FAlIaUUpRoFUvtaBZHQKMLbQizLOl1fZQoaAZoCWgPQwhdbFophGNxQJSGlFKUaBVL/2gWR0CjC4X2dupCdX2UKGgGaAloD0MIsYo3Mo/9cECUhpRSlGgVS8VoFkdAowvESsbNr3V9lChoBmgJaA9DCGajc35KoXBAlIaUUpRoFUvoaBZHQKMMKhwEQoV1fZQoaAZoCWgPQwjgnudPG41wQJSGlFKUaBVL7WgWR0CjDKIxgy/LdX2UKGgGaAloD0MI+g5+4oBocUCUhpRSlGgVS+JoFkdAowzbSkTHsHV9lChoBmgJaA9DCBNhw9OrnG9AlIaUUpRoFUvhaBZHQKMNXZmqYJF1fZQoaAZoCWgPQwgjaqLPh4pyQJSGlFKUaBVL42gWR0CjDXb7TDwZdX2UKGgGaAloD0MIB5W4jrFIc0CUhpRSlGgVTQABaBZHQKMN+CL/CIl1fZQoaAZoCWgPQwjAQubKoH9xQJSGlFKUaBVLymgWR0CjDe7Y02tMdX2UKGgGaAloD0MI3NeBc0aqcUCUhpRSlGgVS9NoFkdAow5wS+QEIXV9lChoBmgJaA9DCNwODYuRd3FAlIaUUpRoFUvWaBZHQKMOc9AX2uh1fZQoaAZoCWgPQwjLZaNzfjZvQJSGlFKUaBVL/WgWR0CjDoCzLOiWdX2UKGgGaAloD0MIYTjXMEPLcUCUhpRSlGgVS89oFkdAow6gTZg5R3V9lChoBmgJaA9DCPzG157ZOXBAlIaUUpRoFUvdaBZHQKMO+3F1jiJ1fZQoaAZoCWgPQwhsXP+uT8FyQJSGlFKUaBVLw2gWR0CjDvQP7N0OdX2UKGgGaAloD0MI1QloIqxbckCUhpRSlGgVTSUBaBZHQKMPFuyeI2x1fZQoaAZoCWgPQwhRbAVNy3h0QJSGlFKUaBVNDAFoFkdAow8uz2OAAnV9lChoBmgJaA9DCI1D/S4sE3FAlIaUUpRoFUvmaBZHQKMPPCuU2UB1fZQoaAZoCWgPQwjGhQMhmZZxQJSGlFKUaBVLymgWR0CjD3dHMEA6dX2UKGgGaAloD0MIu5unOmRUb0CUhpRSlGgVS9VoFkdAoxBL4etCA3V9lChoBmgJaA9DCBlYx/HDrHBAlIaUUpRoFUvtaBZHQKMQdZX+2mZ1fZQoaAZoCWgPQwi7XpoiALxxQJSGlFKUaBVL2WgWR0CjENqCQLeAdX2UKGgGaAloD0MIc9u+R/1/TkCUhpRSlGgVS6NoFkdAoxEHRLK3eHV9lChoBmgJaA9DCCZV200wuHFAlIaUUpRoFUvjaBZHQKMRHyy2QXB1fZQoaAZoCWgPQwgnbD8ZIy5yQJSGlFKUaBVL2mgWR0CjEXJi7TUidX2UKGgGaAloD0MI0lRP5l9ZckCUhpRSlGgVS+1oFkdAoxG4D9wWFnV9lChoBmgJaA9DCEs9C0I5cHFAlIaUUpRoFUvHaBZHQKMRyarmyPd1fZQoaAZoCWgPQwitoj80s1lxQJSGlFKUaBVL1WgWR0CjEeDvmYBvdX2UKGgGaAloD0MI2uGvydodcUCUhpRSlGgVS8FoFkdAoxIHDR+jM3V9lChoBmgJaA9DCBWRYRWv8XNAlIaUUpRoFUvkaBZHQKMSDqCYkVx1fZQoaAZoCWgPQwj61LFKqR5xQJSGlFKUaBVL9mgWR0CjEtaoddVvdX2UKGgGaAloD0MIFVJ+Ui30cUCUhpRSlGgVS+toFkdAoxLn24/eL3V9lChoBmgJaA9DCOElOPWB8W9AlIaUUpRoFUvWaBZHQKMS42uPmxN1fZQoaAZoCWgPQwgMO4xJPwZzQJSGlFKUaBVL5GgWR0CjEtvsZ5zHdX2UKGgGaAloD0MI/MIrSR5bc0CUhpRSlGgVS/5oFkdAoxMd+/gzg3V9lChoBmgJaA9DCPZdEfxvFHJAlIaUUpRoFUvcaBZHQKMTxZ1V5rx1fZQoaAZoCWgPQwiZoIZvYdByQJSGlFKUaBVLuWgWR0CjE/zmwJPZdX2UKGgGaAloD0MIMXvZdprIcECUhpRSlGgVS+9oFkdAoxQ1Q9A5aXV9lChoBmgJaA9DCLN8XYZ/83BAlIaUUpRoFUvfaBZHQKMUVHG0eEJ1fZQoaAZoCWgPQwhu+N10y8hLQJSGlFKUaBVLpmgWR0CjFJhgVoHtdX2UKGgGaAloD0MIhc/WwcGXbkCUhpRSlGgVS9ZoFkdAoxS+VeKKpHV9lChoBmgJaA9DCGn9LQE4d3NAlIaUUpRoFUv0aBZHQKMUy+UyHmB1fZQoaAZoCWgPQwiBmIQLectyQJSGlFKUaBVLzGgWR0CjFOqRlpXZdX2UKGgGaAloD0MI8rT8wJWYckCUhpRSlGgVS95oFkdAoxVwwGnn+3V9lChoBmgJaA9DCLIOR1ep9nBAlIaUUpRoFUvmaBZHQKMVascQyyl1fZQoaAZoCWgPQwhG0JhJ1MdxQJSGlFKUaBVLzGgWR0CjFf0r9VFQdX2UKGgGaAloD0MIGk6Zm++ic0CUhpRSlGgVTRUBaBZHQKMV/MajveB1fZQoaAZoCWgPQwhEigESTfRwQJSGlFKUaBVL2GgWR0CjFmFiSaE0dX2UKGgGaAloD0MI6j2V096dc0CUhpRSlGgVS/doFkdAoxaonpjc23V9lChoBmgJaA9DCI1eDVDasHNAlIaUUpRoFUv4aBZHQKMWn6OYIB11fZQoaAZoCWgPQwhxVG6i1utxQJSGlFKUaBVNEwFoFkdAoxcIHcDbJ3V9lChoBmgJaA9DCP/LtWiBfW9AlIaUUpRoFUvLaBZHQKMXYSeyzHF1fZQoaAZoCWgPQwg7pu7KLu5yQJSGlFKUaBVL9GgWR0CjF5PKlpGndX2UKGgGaAloD0MIQBU3brFjckCUhpRSlGgVS89oFkdAoxeSl54W13V9lChoBmgJaA9DCL9IaMu5LHBAlIaUUpRoFUv9aBZHQKMX9NcnmaJ1fZQoaAZoCWgPQwgeFmpNM+tyQJSGlFKUaBVL3GgWR0CjGA+f7JnydX2UKGgGaAloD0MI58Qe2ocDcUCUhpRSlGgVS8loFkdAoxgUg0TDfnV9lChoBmgJaA9DCMcS1sYY/HFAlIaUUpRoFUvoaBZHQKMYXu+AVfx1fZQoaAZoCWgPQwgvNq0UAi5xQJSGlFKUaBVL5GgWR0CjGFyIHkcTdX2UKGgGaAloD0MIP6vMlBYXckCUhpRSlGgVS/BoFkdAoxkkCFK02XVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 492,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d4df3cddd95b22129990947b37f430f7e739cfc15812e022b8fd464a7a654dc
|
3 |
+
size 84893
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e44383ae75ee1003c6740634ac110a6ea548e552ea4eea6f212b7790d6eca681
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f28f478878e53e976a6dc4a88dbcf0b505e8cff2e60ec4090a91bfa120d928a4
|
3 |
+
size 223079
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 265.1521378979038, "std_reward": 63.75692212816892, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T16:22:43.323981"}
|