mohamedemam
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -14,19 +14,13 @@ datasets:
|
|
14 |
- mohamedemam/Essay-quetions-auto-grading
|
15 |
---
|
16 |
|
17 |
-
# Model Card for Model ID
|
18 |
|
19 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
## Model Details
|
24 |
|
25 |
### Model Description
|
26 |
|
27 |
<!-- Provide a longer summary of what this model is. -->
|
28 |
|
29 |
-
We are thrilled to introduce our graduation project, the
|
30 |
|
31 |
To develop this model, we first created a custom dataset for training. We adapted the QuAC and OpenOrca datasets to make them suitable for our automated essay grading application.
|
32 |
|
@@ -134,11 +128,12 @@ answer="""When choosing a cloud service provider for deploying a large language
|
|
134 |
|
135 |
By evaluating these factors, you can select a cloud service provider that aligns with your deployment needs, ensuring efficient and cost-effective operation of your large language model."""
|
136 |
from peft import PeftModel, PeftConfig
|
137 |
-
from transformers import AutoModelForCausalLM
|
138 |
|
139 |
config = PeftConfig.from_pretrained("mohamedemam/Em2-llama-7b")
|
140 |
base_model = AutoModelForCausalLM.from_pretrained("NousResearch/Llama-2-7b-hf")
|
141 |
model = PeftModel.from_pretrained(base_model, "mohamedemam/Em2-llama-7b")
|
|
|
142 |
pipe=MyPipeline(model,tokenizer)
|
143 |
print(pipe(context,quetion,answer,generate=True,max_new_tokens=4, num_beams=2, do_sample=False,num_return_sequences=1))
|
144 |
```
|
|
|
14 |
- mohamedemam/Essay-quetions-auto-grading
|
15 |
---
|
16 |
|
|
|
17 |
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
### Model Description
|
20 |
|
21 |
<!-- Provide a longer summary of what this model is. -->
|
22 |
|
23 |
+
We are thrilled to introduce our graduation project, the EM2 model, designed for automated essay grading in both Arabic and English. 📝✨
|
24 |
|
25 |
To develop this model, we first created a custom dataset for training. We adapted the QuAC and OpenOrca datasets to make them suitable for our automated essay grading application.
|
26 |
|
|
|
128 |
|
129 |
By evaluating these factors, you can select a cloud service provider that aligns with your deployment needs, ensuring efficient and cost-effective operation of your large language model."""
|
130 |
from peft import PeftModel, PeftConfig
|
131 |
+
from transformers import AutoModelForCausalLM,AutoTokenizer
|
132 |
|
133 |
config = PeftConfig.from_pretrained("mohamedemam/Em2-llama-7b")
|
134 |
base_model = AutoModelForCausalLM.from_pretrained("NousResearch/Llama-2-7b-hf")
|
135 |
model = PeftModel.from_pretrained(base_model, "mohamedemam/Em2-llama-7b")
|
136 |
+
tokenizer = AutoTokenizer.from_pretrained("mohamedemam/Em2-llama-7b", trust_remote_code=True)
|
137 |
pipe=MyPipeline(model,tokenizer)
|
138 |
print(pipe(context,quetion,answer,generate=True,max_new_tokens=4, num_beams=2, do_sample=False,num_return_sequences=1))
|
139 |
```
|