Initial commit
Browse files- .gitattributes +1 -0
- README.md +1 -1
- a2c-AntBulletEnv-v0.zip +2 -2
- a2c-AntBulletEnv-v0/data +21 -21
- a2c-AntBulletEnv-v0/policy.optimizer.pth +1 -1
- a2c-AntBulletEnv-v0/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 2098.82 +/- 46.76
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-AntBulletEnv-v0.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cc4c202989b07fef6793923f442899bdee8e0116c6c2f809d1e7342ac8785f9f
|
3 |
+
size 129205
|
a2c-AntBulletEnv-v0/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
@@ -32,12 +32,12 @@
|
|
32 |
"weight_decay": 0
|
33 |
}
|
34 |
},
|
35 |
-
"num_timesteps":
|
36 |
-
"_total_timesteps":
|
37 |
"_num_timesteps_at_start": 0,
|
38 |
"seed": null,
|
39 |
"action_noise": null,
|
40 |
-
"start_time":
|
41 |
"learning_rate": 0.00096,
|
42 |
"tensorboard_log": null,
|
43 |
"lr_schedule": {
|
@@ -46,7 +46,7 @@
|
|
46 |
},
|
47 |
"_last_obs": {
|
48 |
":type:": "<class 'numpy.ndarray'>",
|
49 |
-
":serialized:": "
|
50 |
},
|
51 |
"_last_episode_starts": {
|
52 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -54,22 +54,22 @@
|
|
54 |
},
|
55 |
"_last_original_obs": {
|
56 |
":type:": "<class 'numpy.ndarray'>",
|
57 |
-
":serialized:": "
|
58 |
},
|
59 |
"_episode_num": 0,
|
60 |
"use_sde": true,
|
61 |
"sde_sample_freq": -1,
|
62 |
-
"_current_progress_remaining":
|
63 |
"_stats_window_size": 100,
|
64 |
"ep_info_buffer": {
|
65 |
":type:": "<class 'collections.deque'>",
|
66 |
-
":serialized:": "
|
67 |
},
|
68 |
"ep_success_buffer": {
|
69 |
":type:": "<class 'collections.deque'>",
|
70 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
71 |
},
|
72 |
-
"_n_updates":
|
73 |
"n_steps": 8,
|
74 |
"gamma": 0.99,
|
75 |
"gae_lambda": 0.9,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f96292ce160>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f96292ce1f0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f96292ce280>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f96292ce310>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f96292ce3a0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f96292ce430>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f96292ce4c0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f96292ce550>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f96292ce5e0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f96292ce670>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f96292ce700>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f96292ce790>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f96292d1120>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
|
|
32 |
"weight_decay": 0
|
33 |
}
|
34 |
},
|
35 |
+
"num_timesteps": 2000000,
|
36 |
+
"_total_timesteps": 2000000,
|
37 |
"_num_timesteps_at_start": 0,
|
38 |
"seed": null,
|
39 |
"action_noise": null,
|
40 |
+
"start_time": 1682490787757083436,
|
41 |
"learning_rate": 0.00096,
|
42 |
"tensorboard_log": null,
|
43 |
"lr_schedule": {
|
|
|
46 |
},
|
47 |
"_last_obs": {
|
48 |
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHQuS78egmS/2RFFPsj64z44v7a//Fk6P1bu6D52X8m9I4nCPogg474BFRk+tEHIPUELob/MdhjAn46hPjwdS76750C+YaCTv2GhXT+5k4W9xWLYvnBWe74dTn6/cDSzPaYaaz+4B9S/l6EBPxikj7/lh8e/EjlEvgYc/z7eWUs/izGKvisxFD8y6qk+cfh4PokXCT8nlbI/Soe/vmffSz0Zmk4/Bx8Nv1sF+j78wuk9BuJyP91ZE78ON2E/CHHRPNp68T5YYb4/V5dLv9T4iz+mGms/uAfUv5ehAT8YpI+/oJQqvyuuWz081gI/v4gFvPn80L4Dkys/jemWvqSRPb8mLCM/Dt7PvJA9nr5o1sS+tOzUvuUUZT+7YUQ/DBcWP7vJSD89dV0/+6HqPh99CL/Mpg0/UgCKPtIoOD/oJNM+ZmCLv0eLGj+XoQE/0R9kP7fL770vRmI+X038PtHfZj9Fzow/OIYTwB8ynz3H1Sy/iB4wP9zs9z+T2H8+zfANQKZiMT9UJ1K/LIghP9tiez076G4/zkcGv1tuqj7Z9JQ94XdoPq2y+T/wgWK+gxQxv2Zgi79Hixo/l6EBPxikj7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
50 |
},
|
51 |
"_last_episode_starts": {
|
52 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
54 |
},
|
55 |
"_last_original_obs": {
|
56 |
":type:": "<class 'numpy.ndarray'>",
|
57 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAABuT+2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAhlTrPQAAAABCT+C/AAAAAJ6Rmr0AAAAAMbYAQAAAAADssp07AAAAAL/7/z8AAAAATg1lvQAAAABJJe2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4tGLNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAQnoD0AAAAAqFLsvwAAAABR5IU9AAAAAIUr8T8AAAAAZBPRPQAAAAA2H+A/AAAAAMtMwL0AAAAAIpjvvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEkaJTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBe6aK9AAAAAHjG4L8AAAAAHu80PQAAAACO39o/AAAAAIHUqb0AAAAA/TjgPwAAAAACaYS9AAAAALM69b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrUo42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA0Y7SvQAAAAC1C+W/AAAAAMN1nD0AAAAAbYXpPwAAAAC/BPe7AAAAAM2h7j8AAAAAtwWauwAAAABhrPG/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
58 |
},
|
59 |
"_episode_num": 0,
|
60 |
"use_sde": true,
|
61 |
"sde_sample_freq": -1,
|
62 |
+
"_current_progress_remaining": 0.0,
|
63 |
"_stats_window_size": 100,
|
64 |
"ep_info_buffer": {
|
65 |
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKCfjjMFEAqMAWyUTegDjAF0lEdAngebcj7hvXV9lChoBkdAoLvrDCP6sWgHTegDaAhHQJ4IRaSs8xN1fZQoaAZHQJhFEC3gDRtoB03oA2gIR0CeChvUjLSvdX2UKGgGR0ChLBACOmzjaAdN6ANoCEdAng2oaxX4kHV9lChoBkdAoYlL19ORDGgHTegDaAhHQJ4XmG34Kx91fZQoaAZHQKDLhXTVlPJoB03oA2gIR0CeGEMQmNR4dX2UKGgGR0CghFEWZZ0TaAdN6ANoCEdAnhoZXU6PsHV9lChoBkdAoAdTR4QjEGgHTegDaAhHQJ4dpOBUaQ51fZQoaAZHQKEAI6ltTDRoB03oA2gIR0CeJ5CWNWELdX2UKGgGR0CfsarDIikgaAdN6ANoCEdAnig6KpDNQnV9lChoBkdAoEAojfNzKmgHTegDaAhHQJ4qD5i3G4t1fZQoaAZHQJvcCzjWCmNoB03oA2gIR0CeLZztCzC2dX2UKGgGR0CftPZwXIluaAdN6ANoCEdAnjeQEpy6tnV9lChoBkdAoBRSqIacZ2gHTegDaAhHQJ44OuFHrhR1fZQoaAZHQJ54Qjnmq5toB03oA2gIR0CeOg8zQ/ordX2UKGgGR0CfrPbiIcioaAdN6ANoCEdAnj2dkBjnWHV9lChoBkdAn41QfQrtmmgHTegDaAhHQJ5Ho8V58jR1fZQoaAZHQKAtgr5qM3toB03oA2gIR0CeSFD/EOy3dX2UKGgGR0CdiyPUrkKeaAdN6ANoCEdAnkotCu2ZzHV9lChoBkdAnYPlIy0rsmgHTegDaAhHQJ5NwYAKfFt1fZQoaAZHQKAJR6fJ3gVoB03oA2gIR0CeV7a6BiCrdX2UKGgGR0CgMW05EMLGaAdN6ANoCEdAnlhhaTwDvHV9lChoBkdAn9d580DU3GgHTegDaAhHQJ5aNokAxSJ1fZQoaAZHQJxlMcZLqUxoB03oA2gIR0CeXcqPOpsHdX2UKGgGR0CgDgmiQDFIaAdN6ANoCEdAnmfDsyBTXXV9lChoBkdAoGEsGPgeimgHTegDaAhHQJ5obnKW9lF1fZQoaAZHQKBn6VCXyAhoB03oA2gIR0CeakL0Bfa6dX2UKGgGR0CgXe8bBGhFaAdN6ANoCEdAnm3O8oQWe3V9lChoBkdAoM1xCtzS1GgHTegDaAhHQJ53vH2h7E51fZQoaAZHQKEjMc8TzupoB03oA2gIR0CeeGattALRdX2UKGgGR0Ch65qQq7ROaAdN6ANoCEdAnno6KLsKLXV9lChoBkdAoaGj52yLRGgHTegDaAhHQJ59yVRk3CN1fZQoaAZHQKBKuu2Zy+9oB03oA2gIR0Ceh7xGlQ/HdX2UKGgGR0ChRE5+QU5/aAdN6ANoCEdAnohogaFVUHV9lChoBkdAoL9kvboKUmgHTegDaAhHQJ6KQNqgyuZ1fZQoaAZHQKEzlUOuq3poB03oA2gIR0CejdFM7EHddX2UKGgGR0CdjJ+zdDYzaAdN6ANoCEdAnpfMA/9pAXV9lChoBkdAoY5h1mrbQGgHTegDaAhHQJ6YeBSUC7t1fZQoaAZHQKEGpjrAxi5oB03oA2gIR0CemlCVrylOdX2UKGgGR0Cf3KTkQwsYaAdN6ANoCEdAnp30Nz8xbnV9lChoBkdAfmvfsNUfgmgHTegDaAhHQJ6oJ4C6pYN1fZQoaAZHQI5DheeFtbdoB03oA2gIR0CeqNSbH6uXdX2UKGgGR0CfoQw++ueSaAdN6ANoCEdAnqqqm4y44XV9lChoBkdAn4rEtRNypGgHTegDaAhHQJ6uO20AtFt1fZQoaAZHQJ0BynZTQ3RoB03oA2gIR0CeuE3S8an8dX2UKGgGR0CecYpPykKvaAdN6ANoCEdAnrj7SApazXV9lChoBkdAm/gki6g/T2gHTegDaAhHQJ661ssQNCt1fZQoaAZHQJrrmiKziS9oB03oA2gIR0CevnJMxoIwdX2UKGgGR0CdI59RrJr+aAdN6ANoCEdAnsiFiSaEz3V9lChoBkdAnm+zrNW2gGgHTegDaAhHQJ7JMSmIj4Z1fZQoaAZHQJtN6fXf645oB03oA2gIR0Ceywr1uivgdX2UKGgGR0CeqGjopx3naAdN6ANoCEdAns6geq7yx3V9lChoBkdAoJ06nFYMfGgHTegDaAhHQJ7YqmWMS9N1fZQoaAZHQKAeXJnxri5oB03oA2gIR0Ce2VVbzK9xdX2UKGgGR0CeWGw1R+BpaAdN6ANoCEdAntst5hScb3V9lChoBkdAoVqoESuhbmgHTegDaAhHQJ7exA1Nxlx1fZQoaAZHQKELAMLF4s5oB03oA2gIR0Ce6L6v7m+1dX2UKGgGR0ChooNDc/MXaAdN6ANoCEdAnulpKraM73V9lChoBkdAoMMYnv2GqWgHTegDaAhHQJ7rRRiw0O51fZQoaAZHQKHBDKJ2t+1oB03oA2gIR0Ce7tmmce8xdX2UKGgGR0CbalZy+6AfaAdN6ANoCEdAnvjix3V093V9lChoBkdAn0J8xj8UEmgHTegDaAhHQJ75jU1AJLN1fZQoaAZHQKCIY+9Jz1doB03oA2gIR0Ce+2SmIj4YdX2UKGgGR0CfLeMpPRAsaAdN6ANoCEdAnv75uEVWS3V9lChoBkdAmtao5T6zmmgHTegDaAhHQJ8I9qCYkVx1fZQoaAZHQJ+E1qSHM2ZoB03oA2gIR0CfCaHIp6QedX2UKGgGR0CftpeTV2A5aAdN6ANoCEdAnwt6uB+WnnV9lChoBkdAnkaaLKmsNmgHTegDaAhHQJ8PDcer+5x1fZQoaAZHQJ/tPU3GXHBoB03oA2gIR0CfGROD8LrpdX2UKGgGR0Cfv5rE9+w1aAdN6ANoCEdAnxm+IuXeFnV9lChoBkdAoEBIfIS13WgHTegDaAhHQJ8bljPOY6Z1fZQoaAZHQKDY7iDM/yJoB03oA2gIR0CfHy20AtFsdX2UKGgGR0Cez5jps41haAdN6ANoCEdAnyk5ztCzC3V9lChoBkdAno9T8YQ8OmgHTegDaAhHQJ8p5XJYDDF1fZQoaAZHQJ4H7kXDWLBoB03oA2gIR0CfK7xDLKV6dX2UKGgGR0CfERIDHOryaAdN6ANoCEdAny9K42CNCXV9lChoBkdAn5KAbuMMqmgHTegDaAhHQJ85S8OCoTB1fZQoaAZHQJ7FoJgLJCBoB03oA2gIR0CfOfXko4MndX2UKGgGR0Cgs2X8O09haAdN6ANoCEdAnzvNgfEGaHV9lChoBkdAoDqgLw4KhWgHTegDaAhHQJ8/YSi/O+t1fZQoaAZHQKED75cC5mRoB03oA2gIR0CfSWuogmqpdX2UKGgGR0CfCd4ku6EraAdN6ANoCEdAn0oX93r2QHV9lChoBkdAnmqxKg7HQ2gHTegDaAhHQJ9L8m3OObR1fZQoaAZHQJswh8PWhAZoB03oA2gIR0CfT5Ad4mkWdX2UKGgGR0CdkSsCT2WZaAdN6ANoCEdAn1mnIEKVp3V9lChoBkdAnSHm/ag262gHTegDaAhHQJ9aUornTy91fZQoaAZHQJ25iraM72doB03oA2gIR0CfXCjs2NvPdX2UKGgGR0CcotCLuQZGaAdN6ANoCEdAn1+42CNCJHV9lChoBkdAlgj5PqLS/mgHTegDaAhHQJ9pt1Ng0CR1fZQoaAZHQJ3iZqVQhwFoB03oA2gIR0CfamLiMo+fdX2UKGgGR0CguNOGj9GaaAdN6ANoCEdAn2w39R77bnV9lChoBkdAnl80WuX/pGgHTegDaAhHQJ9vx+qioKl1fZQoaAZHQKB7FuHerMloB03oA2gIR0Cfeb6i0v4/dX2UKGgGR0CbkarX18LKaAdN6ANoCEdAn3pqHXVbzXV9lChoBkdAnNRhFNL13GgHTegDaAhHQJ98QNlRP451fZQoaAZHQKA0on3ta6loB03oA2gIR0Cff9ALRa5gdX2UKGgGR0CgUdug6EJ0aAdN6ANoCEdAn4nCJfpljHV9lChoBkdAnMqG1UlzEWgHTegDaAhHQJ+Kb1vl2eR1fZQoaAZHQJ9ykFyJbdJoB03oA2gIR0CfjEdKujh2dX2UKGgGR0CgsPnQpnYhaAdN6ANoCEdAn4/bIDHOr3VlLg=="
|
67 |
},
|
68 |
"ep_success_buffer": {
|
69 |
":type:": "<class 'collections.deque'>",
|
70 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
71 |
},
|
72 |
+
"_n_updates": 62500,
|
73 |
"n_steps": 8,
|
74 |
"gamma": 0.99,
|
75 |
"gae_lambda": 0.9,
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 56126
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:614cfc8cbfee43cb424ca2ebdf52df5597e1a55ab24ce952d2788597c90ca762
|
3 |
size 56126
|
a2c-AntBulletEnv-v0/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 56894
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7fe098fd40d240b36dd9f815947a6231198a8be021260037111000a386aa0bca
|
3 |
size 56894
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc61aa1a310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc61aa1a3a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc61aa1a430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc61aa1a4c0>", "_build": "<function ActorCriticPolicy._build at 0x7fc61aa1a550>", "forward": "<function ActorCriticPolicy.forward at 0x7fc61aa1a5e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc61aa1a670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc61aa1a700>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc61aa1a790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc61aa1a820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc61aa1a8b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc61aa1a940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc61aa15fc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1024, "_total_timesteps": 1000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682490616465597187, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUS9ob21lL3VidW50dS8ubG9jYWwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMUS9ob21lL3VidW50dS8ubG9jYWwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAPedEL9/7aM/HucEv2anQb+BAgM/GEgFP0t3u74yQts/bdFjP5fm9L4jTWK+kaQWP/kqlT9mjdu7Zpo7v+dWnD1S8LO67b+fv5+plL8+C6A/X45NP+dJDL9E+iG/ATkdvoLSWj+1JU0/0jMxP1vHMj9sUyW/xzSovbDwlT+vNZM+FWBZv/qMPT660W6/zzUyv0QX1b9ipwe+/JKmvoC6OL4L0UQ/h361vYCRLz88ppM/HKHxP1D9NjvzqEU9HVITvzh9dD8SdYG9yb5xP9HuIb2C0lo/tSVNPxvruL9bxzI/N7fDvEXnKb/y7BI/sgsnPHMMmD/d6s8+aNjYP0z9PL/VxtW/RBcaPUB2KD85SR/AEveHv5fXAz9Dm1m/ZyUPP406gL8Jy1m8Ot6jPYDQ5D1ZNnM/QFs/vX7lcj9OziG9Pb+Vv6S6n7/SMzE/W8cyP5TBqb/WUrq/48XUv0VIKkDw/CM/sJv4PlRBhz8vFvU+rAZ7Pxbu/TzwOYs+uc/RP2Pwkr9jWWg+95DIvuLNJT5i83+/bmVivKr4qT2P0QI+HNm/v/HMIr+iiKe/T+0pvD2/lb+1JU0/0jMxP1vHMj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADiiMa1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA1s2ivAAAAAAWwf2/AAAAALsqMr0AAAAAICbyPwAAAABjRYo8AAAAAG6m6z8AAAAAPaZlPQAAAACuZgDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXOyqtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMx5JT0AAAAAWSXqvwAAAACkvMg7AAAAAJWh5z8AAAAASyy6vQAAAAB5/ts/AAAAACvGsj0AAAAAE43jvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFbDVrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBvpJw9AAAAAN/m+b8AAAAAeUTMPAAAAAAMWe4/AAAAAM3R0rwAAAAArPv8PwAAAACKJHc9AAAAAGKX5L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACLqTU2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAgRYFvQAAAAC5U/e/AAAAAErRCD4AAAAAXd70PwAAAADLo209AAAAAObx+D8AAAAA+SnfPQAAAAAzQ+u/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNgEAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQBqqPfbblBCMAWyUSxSMAXSUR0ADskyDZlFudX2UKGgGR0Am5yiEg4ffaAdLIGgIR0AEEuJ1q33IdX2UKGgGR0Ax+fapPykLaAdLJ2gIR0AE/NNahYeUdX2UKGgGR0AXpUsFt8/maAdLFGgIR0AFosPJ7sv7dX2UKGgGR0AVt1eSjgyeaAdLFGgIR0AGUI/qxC6ZdX2UKGgGR0AVyQNkOI69aAdLFGgIR0AG96HCXQdCdX2UKGgGR0ARAJLM9r44aAdLFGgIR0AHo/C66J66dX2UKGgGR0AZzVH4GlhxaAdLFGgIR0AISb4Ju2qldX2UKGgGR0AWYV6/qPfbaAdLFGgIR0AI9z4k/r0KdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 32, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.0-52-generic-x86_64-with-glibc2.29 # 58~20.04.1-Ubuntu SMP Thu Oct 13 13:09:46 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.8.0", "PyTorch": "1.12.1", "GPU Enabled": "True", "Numpy": "1.23.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f96292ce160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f96292ce1f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f96292ce280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f96292ce310>", "_build": "<function ActorCriticPolicy._build at 0x7f96292ce3a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f96292ce430>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f96292ce4c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f96292ce550>", "_predict": "<function ActorCriticPolicy._predict at 0x7f96292ce5e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f96292ce670>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f96292ce700>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f96292ce790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f96292d1120>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682490787757083436, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUS9ob21lL3VidW50dS8ubG9jYWwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMUS9ob21lL3VidW50dS8ubG9jYWwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHQuS78egmS/2RFFPsj64z44v7a//Fk6P1bu6D52X8m9I4nCPogg474BFRk+tEHIPUELob/MdhjAn46hPjwdS76750C+YaCTv2GhXT+5k4W9xWLYvnBWe74dTn6/cDSzPaYaaz+4B9S/l6EBPxikj7/lh8e/EjlEvgYc/z7eWUs/izGKvisxFD8y6qk+cfh4PokXCT8nlbI/Soe/vmffSz0Zmk4/Bx8Nv1sF+j78wuk9BuJyP91ZE78ON2E/CHHRPNp68T5YYb4/V5dLv9T4iz+mGms/uAfUv5ehAT8YpI+/oJQqvyuuWz081gI/v4gFvPn80L4Dkys/jemWvqSRPb8mLCM/Dt7PvJA9nr5o1sS+tOzUvuUUZT+7YUQ/DBcWP7vJSD89dV0/+6HqPh99CL/Mpg0/UgCKPtIoOD/oJNM+ZmCLv0eLGj+XoQE/0R9kP7fL770vRmI+X038PtHfZj9Fzow/OIYTwB8ynz3H1Sy/iB4wP9zs9z+T2H8+zfANQKZiMT9UJ1K/LIghP9tiez076G4/zkcGv1tuqj7Z9JQ94XdoPq2y+T/wgWK+gxQxv2Zgi79Hixo/l6EBPxikj7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAABuT+2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAhlTrPQAAAABCT+C/AAAAAJ6Rmr0AAAAAMbYAQAAAAADssp07AAAAAL/7/z8AAAAATg1lvQAAAABJJe2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4tGLNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAQnoD0AAAAAqFLsvwAAAABR5IU9AAAAAIUr8T8AAAAAZBPRPQAAAAA2H+A/AAAAAMtMwL0AAAAAIpjvvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEkaJTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBe6aK9AAAAAHjG4L8AAAAAHu80PQAAAACO39o/AAAAAIHUqb0AAAAA/TjgPwAAAAACaYS9AAAAALM69b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrUo42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA0Y7SvQAAAAC1C+W/AAAAAMN1nD0AAAAAbYXpPwAAAAC/BPe7AAAAAM2h7j8AAAAAtwWauwAAAABhrPG/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKCfjjMFEAqMAWyUTegDjAF0lEdAngebcj7hvXV9lChoBkdAoLvrDCP6sWgHTegDaAhHQJ4IRaSs8xN1fZQoaAZHQJhFEC3gDRtoB03oA2gIR0CeChvUjLSvdX2UKGgGR0ChLBACOmzjaAdN6ANoCEdAng2oaxX4kHV9lChoBkdAoYlL19ORDGgHTegDaAhHQJ4XmG34Kx91fZQoaAZHQKDLhXTVlPJoB03oA2gIR0CeGEMQmNR4dX2UKGgGR0CghFEWZZ0TaAdN6ANoCEdAnhoZXU6PsHV9lChoBkdAoAdTR4QjEGgHTegDaAhHQJ4dpOBUaQ51fZQoaAZHQKEAI6ltTDRoB03oA2gIR0CeJ5CWNWELdX2UKGgGR0CfsarDIikgaAdN6ANoCEdAnig6KpDNQnV9lChoBkdAoEAojfNzKmgHTegDaAhHQJ4qD5i3G4t1fZQoaAZHQJvcCzjWCmNoB03oA2gIR0CeLZztCzC2dX2UKGgGR0CftPZwXIluaAdN6ANoCEdAnjeQEpy6tnV9lChoBkdAoBRSqIacZ2gHTegDaAhHQJ44OuFHrhR1fZQoaAZHQJ54Qjnmq5toB03oA2gIR0CeOg8zQ/ordX2UKGgGR0CfrPbiIcioaAdN6ANoCEdAnj2dkBjnWHV9lChoBkdAn41QfQrtmmgHTegDaAhHQJ5Ho8V58jR1fZQoaAZHQKAtgr5qM3toB03oA2gIR0CeSFD/EOy3dX2UKGgGR0CdiyPUrkKeaAdN6ANoCEdAnkotCu2ZzHV9lChoBkdAnYPlIy0rsmgHTegDaAhHQJ5NwYAKfFt1fZQoaAZHQKAJR6fJ3gVoB03oA2gIR0CeV7a6BiCrdX2UKGgGR0CgMW05EMLGaAdN6ANoCEdAnlhhaTwDvHV9lChoBkdAn9d580DU3GgHTegDaAhHQJ5aNokAxSJ1fZQoaAZHQJxlMcZLqUxoB03oA2gIR0CeXcqPOpsHdX2UKGgGR0CgDgmiQDFIaAdN6ANoCEdAnmfDsyBTXXV9lChoBkdAoGEsGPgeimgHTegDaAhHQJ5obnKW9lF1fZQoaAZHQKBn6VCXyAhoB03oA2gIR0CeakL0Bfa6dX2UKGgGR0CgXe8bBGhFaAdN6ANoCEdAnm3O8oQWe3V9lChoBkdAoM1xCtzS1GgHTegDaAhHQJ53vH2h7E51fZQoaAZHQKEjMc8TzupoB03oA2gIR0CeeGattALRdX2UKGgGR0Ch65qQq7ROaAdN6ANoCEdAnno6KLsKLXV9lChoBkdAoaGj52yLRGgHTegDaAhHQJ59yVRk3CN1fZQoaAZHQKBKuu2Zy+9oB03oA2gIR0Ceh7xGlQ/HdX2UKGgGR0ChRE5+QU5/aAdN6ANoCEdAnohogaFVUHV9lChoBkdAoL9kvboKUmgHTegDaAhHQJ6KQNqgyuZ1fZQoaAZHQKEzlUOuq3poB03oA2gIR0CejdFM7EHddX2UKGgGR0CdjJ+zdDYzaAdN6ANoCEdAnpfMA/9pAXV9lChoBkdAoY5h1mrbQGgHTegDaAhHQJ6YeBSUC7t1fZQoaAZHQKEGpjrAxi5oB03oA2gIR0CemlCVrylOdX2UKGgGR0Cf3KTkQwsYaAdN6ANoCEdAnp30Nz8xbnV9lChoBkdAfmvfsNUfgmgHTegDaAhHQJ6oJ4C6pYN1fZQoaAZHQI5DheeFtbdoB03oA2gIR0CeqNSbH6uXdX2UKGgGR0CfoQw++ueSaAdN6ANoCEdAnqqqm4y44XV9lChoBkdAn4rEtRNypGgHTegDaAhHQJ6uO20AtFt1fZQoaAZHQJ0BynZTQ3RoB03oA2gIR0CeuE3S8an8dX2UKGgGR0CecYpPykKvaAdN6ANoCEdAnrj7SApazXV9lChoBkdAm/gki6g/T2gHTegDaAhHQJ661ssQNCt1fZQoaAZHQJrrmiKziS9oB03oA2gIR0CevnJMxoIwdX2UKGgGR0CdI59RrJr+aAdN6ANoCEdAnsiFiSaEz3V9lChoBkdAnm+zrNW2gGgHTegDaAhHQJ7JMSmIj4Z1fZQoaAZHQJtN6fXf645oB03oA2gIR0Ceywr1uivgdX2UKGgGR0CeqGjopx3naAdN6ANoCEdAns6geq7yx3V9lChoBkdAoJ06nFYMfGgHTegDaAhHQJ7YqmWMS9N1fZQoaAZHQKAeXJnxri5oB03oA2gIR0Ce2VVbzK9xdX2UKGgGR0CeWGw1R+BpaAdN6ANoCEdAntst5hScb3V9lChoBkdAoVqoESuhbmgHTegDaAhHQJ7exA1Nxlx1fZQoaAZHQKELAMLF4s5oB03oA2gIR0Ce6L6v7m+1dX2UKGgGR0ChooNDc/MXaAdN6ANoCEdAnulpKraM73V9lChoBkdAoMMYnv2GqWgHTegDaAhHQJ7rRRiw0O51fZQoaAZHQKHBDKJ2t+1oB03oA2gIR0Ce7tmmce8xdX2UKGgGR0CbalZy+6AfaAdN6ANoCEdAnvjix3V093V9lChoBkdAn0J8xj8UEmgHTegDaAhHQJ75jU1AJLN1fZQoaAZHQKCIY+9Jz1doB03oA2gIR0Ce+2SmIj4YdX2UKGgGR0CfLeMpPRAsaAdN6ANoCEdAnv75uEVWS3V9lChoBkdAmtao5T6zmmgHTegDaAhHQJ8I9qCYkVx1fZQoaAZHQJ+E1qSHM2ZoB03oA2gIR0CfCaHIp6QedX2UKGgGR0CftpeTV2A5aAdN6ANoCEdAnwt6uB+WnnV9lChoBkdAnkaaLKmsNmgHTegDaAhHQJ8PDcer+5x1fZQoaAZHQJ/tPU3GXHBoB03oA2gIR0CfGROD8LrpdX2UKGgGR0Cfv5rE9+w1aAdN6ANoCEdAnxm+IuXeFnV9lChoBkdAoEBIfIS13WgHTegDaAhHQJ8bljPOY6Z1fZQoaAZHQKDY7iDM/yJoB03oA2gIR0CfHy20AtFsdX2UKGgGR0Cez5jps41haAdN6ANoCEdAnyk5ztCzC3V9lChoBkdAno9T8YQ8OmgHTegDaAhHQJ8p5XJYDDF1fZQoaAZHQJ4H7kXDWLBoB03oA2gIR0CfK7xDLKV6dX2UKGgGR0CfERIDHOryaAdN6ANoCEdAny9K42CNCXV9lChoBkdAn5KAbuMMqmgHTegDaAhHQJ85S8OCoTB1fZQoaAZHQJ7FoJgLJCBoB03oA2gIR0CfOfXko4MndX2UKGgGR0Cgs2X8O09haAdN6ANoCEdAnzvNgfEGaHV9lChoBkdAoDqgLw4KhWgHTegDaAhHQJ8/YSi/O+t1fZQoaAZHQKED75cC5mRoB03oA2gIR0CfSWuogmqpdX2UKGgGR0CfCd4ku6EraAdN6ANoCEdAn0oX93r2QHV9lChoBkdAnmqxKg7HQ2gHTegDaAhHQJ9L8m3OObR1fZQoaAZHQJswh8PWhAZoB03oA2gIR0CfT5Ad4mkWdX2UKGgGR0CdkSsCT2WZaAdN6ANoCEdAn1mnIEKVp3V9lChoBkdAnSHm/ag262gHTegDaAhHQJ9aUornTy91fZQoaAZHQJ25iraM72doB03oA2gIR0CfXCjs2NvPdX2UKGgGR0CcotCLuQZGaAdN6ANoCEdAn1+42CNCJHV9lChoBkdAlgj5PqLS/mgHTegDaAhHQJ9pt1Ng0CR1fZQoaAZHQJ3iZqVQhwFoB03oA2gIR0CfamLiMo+fdX2UKGgGR0CguNOGj9GaaAdN6ANoCEdAn2w39R77bnV9lChoBkdAnl80WuX/pGgHTegDaAhHQJ9vx+qioKl1fZQoaAZHQKB7FuHerMloB03oA2gIR0Cfeb6i0v4/dX2UKGgGR0CbkarX18LKaAdN6ANoCEdAn3pqHXVbzXV9lChoBkdAnNRhFNL13GgHTegDaAhHQJ98QNlRP451fZQoaAZHQKA0on3ta6loB03oA2gIR0Cff9ALRa5gdX2UKGgGR0CgUdug6EJ0aAdN6ANoCEdAn4nCJfpljHV9lChoBkdAnMqG1UlzEWgHTegDaAhHQJ+Kb1vl2eR1fZQoaAZHQJ9ykFyJbdJoB03oA2gIR0CfjEdKujh2dX2UKGgGR0CgsPnQpnYhaAdN6ANoCEdAn4/bIDHOr3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.0-52-generic-x86_64-with-glibc2.29 # 58~20.04.1-Ubuntu SMP Thu Oct 13 13:09:46 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.8.0", "PyTorch": "1.12.1", "GPU Enabled": "True", "Numpy": "1.23.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 2098.8211619670037, "std_reward": 46.75900606477098, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-26T07:07:11.036937"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2170
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:afb4717f2cae85af3db8dbad24907a5f9516c759a74dfc34d1379b435d277fa3
|
3 |
size 2170
|