|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import annotations |
|
|
|
from typing import TYPE_CHECKING, Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union |
|
|
|
import torch |
|
from monai.apps.detection.networks.retinanet_detector import RetinaNetDetector |
|
from monai.config import IgniteInfo |
|
from monai.engines.evaluator import SupervisedEvaluator |
|
from monai.engines.utils import IterationEvents, default_metric_cmp_fn |
|
from monai.transforms import Transform |
|
from monai.utils import ForwardMode, min_version, optional_import |
|
from monai.utils.enums import CommonKeys as Keys |
|
from torch.utils.data import DataLoader |
|
|
|
from .detection_inferer import RetinaNetInferer |
|
|
|
if TYPE_CHECKING: |
|
from ignite.engine import Engine, EventEnum |
|
from ignite.metrics import Metric |
|
else: |
|
Engine, _ = optional_import("ignite.engine", IgniteInfo.OPT_IMPORT_VERSION, min_version, "Engine") |
|
Metric, _ = optional_import("ignite.metrics", IgniteInfo.OPT_IMPORT_VERSION, min_version, "Metric") |
|
EventEnum, _ = optional_import("ignite.engine", IgniteInfo.OPT_IMPORT_VERSION, min_version, "EventEnum") |
|
|
|
__all__ = ["DetectionEvaluator"] |
|
|
|
|
|
def detection_prepare_val_batch( |
|
batchdata: List[Dict[str, torch.Tensor]], |
|
device: Optional[Union[str, torch.device]] = None, |
|
non_blocking: bool = False, |
|
**kwargs, |
|
) -> Union[Tuple[torch.Tensor, Optional[torch.Tensor]], torch.Tensor]: |
|
""" |
|
Default function to prepare the data for current iteration. |
|
Args `batchdata`, `device`, `non_blocking` refer to the ignite API: |
|
https://pytorch.org/ignite/v0.4.8/generated/ignite.engine.create_supervised_trainer.html. |
|
`kwargs` supports other args for `Tensor.to()` API. |
|
Returns: |
|
image, label(optional). |
|
""" |
|
inputs = [ |
|
batch_data_i["image"].to(device=device, non_blocking=non_blocking, **kwargs) for batch_data_i in batchdata |
|
] |
|
|
|
if isinstance(batchdata[0].get(Keys.LABEL), torch.Tensor): |
|
targets = [ |
|
dict( |
|
label=batch_data_i["label"].to(device=device, non_blocking=non_blocking, **kwargs), |
|
box=batch_data_i["box"].to(device=device, non_blocking=non_blocking, **kwargs), |
|
) |
|
for batch_data_i in batchdata |
|
] |
|
return (inputs, targets) |
|
return inputs, None |
|
|
|
|
|
class DetectionEvaluator(SupervisedEvaluator): |
|
""" |
|
Supervised detection evaluation method with image and label, inherits from ``SupervisedEvaluator`` and ``Workflow``. |
|
Args: |
|
device: an object representing the device on which to run. |
|
val_data_loader: Ignite engine use data_loader to run, must be Iterable, typically be torch.DataLoader. |
|
network: detector to evaluate in the evaluator, should be regular PyTorch `torch.nn.Module`. |
|
epoch_length: number of iterations for one epoch, default to `len(val_data_loader)`. |
|
non_blocking: if True and this copy is between CPU and GPU, the copy may occur asynchronously |
|
with respect to the host. For other cases, this argument has no effect. |
|
prepare_batch: function to parse expected data (usually `image`, `label` and other network args) |
|
from `engine.state.batch` for every iteration, for more details please refer to: |
|
https://pytorch.org/ignite/generated/ignite.engine.create_supervised_trainer.html. |
|
iteration_update: the callable function for every iteration, expect to accept `engine` |
|
and `engine.state.batch` as inputs, return data will be stored in `engine.state.output`. |
|
if not provided, use `self._iteration()` instead. for more details please refer to: |
|
https://pytorch.org/ignite/generated/ignite.engine.engine.Engine.html. |
|
inferer: inference method that execute model forward on input data, like: SlidingWindow, etc. |
|
postprocessing: execute additional transformation for the model output data. |
|
Typically, several Tensor based transforms composed by `Compose`. |
|
key_val_metric: compute metric when every iteration completed, and save average value to |
|
engine.state.metrics when epoch completed. key_val_metric is the main metric to compare and save the |
|
checkpoint into files. |
|
additional_metrics: more Ignite metrics that also attach to Ignite Engine. |
|
metric_cmp_fn: function to compare current key metric with previous best key metric value, |
|
it must accept 2 args (current_metric, previous_best) and return a bool result: if `True`, will update |
|
`best_metric` and `best_metric_epoch` with current metric and epoch, default to `greater than`. |
|
val_handlers: every handler is a set of Ignite Event-Handlers, must have `attach` function, like: |
|
CheckpointHandler, StatsHandler, etc. |
|
amp: whether to enable auto-mixed-precision evaluation, default is False. |
|
mode: model forward mode during evaluation, should be 'eval' or 'train', |
|
which maps to `model.eval()` or `model.train()`, default to 'eval'. |
|
event_names: additional custom ignite events that will register to the engine. |
|
new events can be a list of str or `ignite.engine.events.EventEnum`. |
|
event_to_attr: a dictionary to map an event to a state attribute, then add to `engine.state`. |
|
for more details, check: https://pytorch.org/ignite/generated/ignite.engine.engine.Engine.html |
|
#ignite.engine.engine.Engine.register_events. |
|
decollate: whether to decollate the batch-first data to a list of data after model computation, |
|
recommend `decollate=True` when `postprocessing` uses components from `monai.transforms`. |
|
default to `True`. |
|
to_kwargs: dict of other args for `prepare_batch` API when converting the input data, except for |
|
`device`, `non_blocking`. |
|
amp_kwargs: dict of the args for `torch.cuda.amp.autocast()` API, for more details: |
|
https://pytorch.org/docs/stable/amp.html#torch.cuda.amp.autocast. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
device: torch.device, |
|
val_data_loader: Iterable | DataLoader, |
|
network: RetinaNetDetector, |
|
epoch_length: int | None = None, |
|
non_blocking: bool = False, |
|
prepare_batch: Callable = detection_prepare_val_batch, |
|
iteration_update: Callable[[Engine, Any], Any] | None = None, |
|
inferer: RetinaNetInferer | None = None, |
|
postprocessing: Transform | None = None, |
|
key_val_metric: dict[str, Metric] | None = None, |
|
additional_metrics: dict[str, Metric] | None = None, |
|
metric_cmp_fn: Callable = default_metric_cmp_fn, |
|
val_handlers: Sequence | None = None, |
|
amp: bool = False, |
|
mode: ForwardMode | str = ForwardMode.EVAL, |
|
event_names: list[str | EventEnum] | None = None, |
|
event_to_attr: dict | None = None, |
|
decollate: bool = True, |
|
to_kwargs: dict | None = None, |
|
amp_kwargs: dict | None = None, |
|
) -> None: |
|
super().__init__( |
|
device=device, |
|
val_data_loader=val_data_loader, |
|
network=network, |
|
epoch_length=epoch_length, |
|
non_blocking=non_blocking, |
|
prepare_batch=prepare_batch, |
|
iteration_update=iteration_update, |
|
inferer=inferer, |
|
postprocessing=postprocessing, |
|
key_val_metric=key_val_metric, |
|
additional_metrics=additional_metrics, |
|
metric_cmp_fn=metric_cmp_fn, |
|
val_handlers=val_handlers, |
|
amp=amp, |
|
mode=mode, |
|
event_names=event_names, |
|
event_to_attr=event_to_attr, |
|
decollate=decollate, |
|
to_kwargs=to_kwargs, |
|
amp_kwargs=amp_kwargs, |
|
) |
|
|
|
def _register_decollate(self): |
|
""" |
|
Register the decollate operation for batch data, will execute after model forward and loss forward. |
|
""" |
|
|
|
@self.on(IterationEvents.MODEL_COMPLETED) |
|
def _decollate_data(engine: Engine) -> None: |
|
output_list = [] |
|
for i in range(len(engine.state.output[Keys.IMAGE])): |
|
output_list.append({}) |
|
for k in engine.state.output.keys(): |
|
if engine.state.output[k] is not None: |
|
output_list[i][k] = engine.state.output[k][i] |
|
engine.state.output = output_list |
|
|