|
|
|
|
|
from .configuration_baichuan import BaichuanConfig |
|
|
|
|
|
import math |
|
from threading import Thread |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss |
|
from torch.nn import functional as F |
|
from transformers import PreTrainedModel, PretrainedConfig |
|
from transformers.activations import ACT2FN |
|
from transformers.generation.utils import GenerationConfig |
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast |
|
from transformers.utils import logging, ContextManagers |
|
|
|
import os |
|
from contextlib import contextmanager |
|
from accelerate import init_empty_weights |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
try: |
|
from xformers import ops as xops |
|
except ImportError: |
|
xops = None |
|
logger.warning( |
|
"Xformers is not installed correctly. If you want to use memory_efficient_attention to accelerate training use the following command to install Xformers\npip install xformers." |
|
) |
|
|
|
|
|
def _get_interleave(n): |
|
def _get_interleave_power_of_2(n): |
|
start = 2 ** (-(2 ** -(math.log2(n) - 3))) |
|
ratio = start |
|
return [start * ratio**i for i in range(n)] |
|
|
|
if math.log2(n).is_integer(): |
|
return _get_interleave_power_of_2(n) |
|
else: |
|
closest_power_of_2 = 2 ** math.floor(math.log2(n)) |
|
return ( |
|
_get_interleave_power_of_2(closest_power_of_2) |
|
+ _get_interleave(2 * closest_power_of_2)[0::2][: n - closest_power_of_2] |
|
) |
|
|
|
|
|
def _fill_with_neg_inf(t): |
|
"""FP16-compatible function that fills a tensor with -inf.""" |
|
return t.float().fill_(float("-inf")).type_as(t) |
|
|
|
|
|
def _buffered_future_mask(tensor, maxpos, alibi, attn_heads): |
|
_future_mask = torch.triu(_fill_with_neg_inf(torch.zeros([maxpos, maxpos])), 1) |
|
_future_mask = _future_mask.unsqueeze(0) + alibi |
|
new_future_mask = _future_mask.to(tensor) |
|
return new_future_mask[: tensor.shape[0] * attn_heads, :maxpos, :maxpos] |
|
|
|
|
|
def _gen_alibi_mask(tensor, n_head, max_pos): |
|
slopes = torch.Tensor(_get_interleave(n_head)) |
|
position_point = torch.arange(max_pos) - max_pos + 1 |
|
position_point = position_point.unsqueeze(0).unsqueeze(0).expand(n_head, -1, -1) |
|
diag = torch.diag(position_point[0]) |
|
position_point = position_point - diag.unsqueeze(0).unsqueeze(0).transpose(-1, -2) |
|
alibi = slopes.unsqueeze(1).unsqueeze(1) * position_point |
|
alibi = alibi.view(n_head, 1, max_pos) |
|
alibi_mask = torch.triu(_fill_with_neg_inf(torch.zeros([max_pos, max_pos])), 1) |
|
alibi_mask = alibi_mask.unsqueeze(0) + alibi |
|
return alibi_mask |
|
|
|
|
|
class RMSNorm(torch.nn.Module): |
|
def __init__(self, hidden_size, epsilon=1e-6): |
|
super().__init__() |
|
self.weight = torch.nn.Parameter(torch.empty(hidden_size)) |
|
self.epsilon = epsilon |
|
|
|
def forward(self, hidden_states): |
|
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.epsilon) |
|
|
|
|
|
if self.weight.dtype in [torch.float16, torch.bfloat16]: |
|
hidden_states = hidden_states.to(self.weight.dtype) |
|
|
|
return self.weight * hidden_states |
|
|
|
|
|
class MLP(torch.nn.Module): |
|
def __init__( |
|
self, |
|
hidden_size: int, |
|
intermediate_size: int, |
|
hidden_act: str, |
|
): |
|
super().__init__() |
|
self.gate_proj = torch.nn.Linear(hidden_size, intermediate_size, bias=False) |
|
self.down_proj = torch.nn.Linear(intermediate_size, hidden_size, bias=False) |
|
self.up_proj = torch.nn.Linear(hidden_size, intermediate_size, bias=False) |
|
self.act_fn = ACT2FN[hidden_act] |
|
|
|
def forward(self, x): |
|
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
|
|
|
|
class BaichuanAttention(torch.nn.Module): |
|
def __init__(self, config: BaichuanConfig): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.hidden_size // self.num_heads |
|
self.max_position_embeddings = config.model_max_length |
|
|
|
if (self.head_dim * self.num_heads) != self.hidden_size: |
|
raise ValueError( |
|
f"hidden_size {self.hidden_size} is not divisible by num_heads {self.num_heads}" |
|
) |
|
self.W_pack = torch.nn.Linear( |
|
self.hidden_size, 3 * self.hidden_size, bias=False |
|
) |
|
self.o_proj = torch.nn.Linear( |
|
self.num_heads * self.head_dim, self.hidden_size, bias=False |
|
) |
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): |
|
return ( |
|
tensor.view(bsz, seq_len, self.num_heads, self.head_dim) |
|
.transpose(1, 2) |
|
.contiguous() |
|
) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
proj = self.W_pack(hidden_states) |
|
proj = ( |
|
proj.unflatten(-1, (3, self.hidden_size)) |
|
.unsqueeze(0) |
|
.transpose(0, -2) |
|
.squeeze(-2) |
|
) |
|
query_states = ( |
|
proj[0].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
) |
|
key_states = ( |
|
proj[1].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
) |
|
value_states = ( |
|
proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None: |
|
kv_seq_len += past_key_value[0].shape[-2] |
|
|
|
if past_key_value is not None: |
|
|
|
key_states = torch.cat([past_key_value[0], key_states], dim=2) |
|
value_states = torch.cat([past_key_value[1], value_states], dim=2) |
|
|
|
past_key_value = (key_states, value_states) if use_cache else None |
|
if xops is not None and self.training: |
|
attn_weights = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=True): |
|
attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, attn_mask = attention_mask) |
|
attn_output = attn_output.transpose(1, 2) |
|
else: |
|
attn_weights = torch.matmul( |
|
query_states, key_states.transpose(2, 3) |
|
) / math.sqrt(self.head_dim) |
|
|
|
if attention_mask is not None: |
|
if q_len == 1: |
|
if len(attention_mask.size()) == 4: |
|
attention_mask = attention_mask[:, :, -1:, :] |
|
else: |
|
attention_mask = attention_mask[:, -1:, :] |
|
attn_weights = attn_weights + attention_mask |
|
attn_weights = torch.max( |
|
attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min) |
|
) |
|
|
|
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1) |
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
|
attn_output = attn_output.transpose(1, 2) |
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) |
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
class BaichuanLayer(torch.nn.Module): |
|
def __init__(self, config: BaichuanConfig): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
self.self_attn = BaichuanAttention(config=config) |
|
self.mlp = MLP( |
|
hidden_size=self.hidden_size, |
|
intermediate_size=config.intermediate_size, |
|
hidden_act=config.hidden_act, |
|
) |
|
self.input_layernorm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps) |
|
self.post_attention_layernorm = RMSNorm( |
|
config.hidden_size, epsilon=config.rms_norm_eps |
|
) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
) -> Tuple[ |
|
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] |
|
]: |
|
residual = hidden_states |
|
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
hidden_states, self_attn_weights, present_key_value = self.self_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
hidden_states = residual + hidden_states |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
hidden_states = self.mlp(hidden_states) |
|
hidden_states = residual + hidden_states |
|
|
|
outputs = (hidden_states,) |
|
|
|
if use_cache: |
|
outputs += (present_key_value,) |
|
|
|
return outputs |
|
|
|
|
|
class BaichuanPreTrainedModel(PreTrainedModel): |
|
config_class = BaichuanConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["BaichuanLayer"] |
|
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"] |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, torch.nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, torch.nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, BaichuanModel): |
|
module.gradient_checkpointing = value |
|
|
|
|
|
class BaichuanModel(BaichuanPreTrainedModel): |
|
def __init__(self, config: BaichuanConfig): |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
self.n_head = config.num_attention_heads |
|
self.embed_tokens = torch.nn.Embedding( |
|
config.vocab_size, config.hidden_size, self.padding_idx |
|
) |
|
self.layers = torch.nn.ModuleList( |
|
[BaichuanLayer(config) for _ in range(config.num_hidden_layers)] |
|
) |
|
self.norm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps) |
|
|
|
self.gradient_checkpointing = config.gradient_checkpointing |
|
self.post_init() |
|
self.max_cache_pos = config.model_max_length |
|
self.first_run = True |
|
self.alibi_mask = None |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
def get_alibi_mask(self, tensor, seq_length_with_past): |
|
if self.training: |
|
slopes = torch.Tensor(_get_interleave(self.n_head)) |
|
position_point = ( |
|
torch.arange(seq_length_with_past) - seq_length_with_past + 1 |
|
) |
|
position_point = ( |
|
position_point.unsqueeze(0) |
|
.unsqueeze(0) |
|
.expand(self.n_head, seq_length_with_past, -1) |
|
) |
|
diag = torch.diag(position_point[0]) |
|
position_point = position_point - diag.unsqueeze(0).unsqueeze(0).transpose( |
|
-1, -2 |
|
) |
|
alibi = slopes.unsqueeze(1).unsqueeze(1) * position_point |
|
mask = _buffered_future_mask( |
|
tensor, seq_length_with_past, alibi, self.n_head |
|
) |
|
else: |
|
if self.first_run: |
|
self.first_run = False |
|
self.register_buffer( |
|
"future_mask", |
|
_gen_alibi_mask(tensor, self.n_head, self.max_cache_pos).to( |
|
tensor |
|
), |
|
persistent=False, |
|
) |
|
if seq_length_with_past > self.max_cache_pos: |
|
self.max_cache_pos = seq_length_with_past |
|
self.register_buffer( |
|
"future_mask", |
|
_gen_alibi_mask(tensor, self.n_head, self.max_cache_pos).to( |
|
tensor |
|
), |
|
persistent=False, |
|
) |
|
mask = self.future_mask[ |
|
: self.n_head, :seq_length_with_past, :seq_length_with_past |
|
] |
|
return mask |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = False, |
|
output_attentions: Optional[bool] = False, |
|
output_hidden_states: Optional[bool] = False, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError( |
|
"You cannot provide both input_ids and inputs_embeds simultaneously" |
|
) |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape |
|
elif inputs_embeds is not None: |
|
batch_size, seq_length, _ = inputs_embeds.shape |
|
else: |
|
raise ValueError("You need to provide input_ids or inputs_embeds") |
|
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
seq_length_with_past = seq_length |
|
|
|
if past_key_values is not None: |
|
past_key_values_length = past_key_values[0][0].shape[2] |
|
seq_length_with_past = seq_length_with_past + past_key_values_length |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
if self.training: |
|
if ( |
|
self.alibi_mask is None |
|
or self.alibi_mask.shape[-1] != seq_length_with_past |
|
): |
|
self.alibi_mask = self.get_alibi_mask( |
|
inputs_embeds, seq_length_with_past |
|
) |
|
alibi_mask = self.alibi_mask |
|
else: |
|
alibi_mask = self.get_alibi_mask(inputs_embeds, seq_length_with_past) |
|
|
|
if attention_mask is not None: |
|
if len(attention_mask.shape) == 2: |
|
expanded_mask = attention_mask.to(alibi_mask.dtype) |
|
expanded_mask = torch.tril( |
|
torch.gt(expanded_mask[:, :, None] * expanded_mask[:, None, :], 0) |
|
) * torch.eq(expanded_mask[:, :, None] - expanded_mask[:, None, :], 0) |
|
else: |
|
expanded_mask = attention_mask |
|
bsz = inputs_embeds.size(0) |
|
src_len, tgt_len = alibi_mask.size()[-2:] |
|
expanded_mask = ( |
|
expanded_mask.unsqueeze(1) |
|
.expand(bsz, 1, src_len, tgt_len) |
|
.to(alibi_mask.dtype) |
|
) |
|
inverted_mask = 1.0 - expanded_mask |
|
inverted_mask = inverted_mask.masked_fill( |
|
inverted_mask.to(torch.bool), torch.finfo(alibi_mask.dtype).min |
|
) |
|
attention_mask = inverted_mask + alibi_mask.unsqueeze(0) |
|
else: |
|
attention_mask = alibi_mask |
|
|
|
hidden_states = inputs_embeds |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
next_decoder_cache = () if use_cache else None |
|
|
|
for idx, decoder_layer in enumerate(self.layers): |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
past_key_value = ( |
|
past_key_values[idx] if past_key_values is not None else None |
|
) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
|
|
return module(*inputs, output_attentions, None) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(decoder_layer), |
|
hidden_states, |
|
attention_mask, |
|
None, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if use_cache: |
|
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = next_decoder_cache if use_cache else None |
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] |
|
if v is not None |
|
) |
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
|
|
class NormHead(nn.Module): |
|
def __init__(self, hidden_size, vocab_size, bias=False): |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.empty((vocab_size, hidden_size))) |
|
nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5)) |
|
self.first_flag = True |
|
|
|
def forward(self, hidden_states): |
|
if self.training: |
|
norm_weight = nn.functional.normalize(self.weight) |
|
self.first_flag = True |
|
elif self.first_flag: |
|
self.first_flag = False |
|
self.weight = nn.Parameter(nn.functional.normalize(self.weight)) |
|
norm_weight = self.weight |
|
else: |
|
norm_weight = self.weight |
|
return nn.functional.linear(hidden_states, norm_weight) |
|
|
|
_init_weights = True |
|
@contextmanager |
|
def no_init_weights(_enable=True): |
|
global _init_weights |
|
old_init_weights = _init_weights |
|
if _enable: |
|
_init_weights = False |
|
try: |
|
yield |
|
finally: |
|
_init_weights = old_init_weights |
|
|
|
|
|
class BaichuanCharRM(BaichuanPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model = BaichuanModel(config) |
|
self.score = nn.Linear(config.hidden_size, 1, bias=True) |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
): |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
transformer_outputs = self.model( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states = transformer_outputs[0] |
|
|
|
hidden_states = hidden_states[:, -1, :] |
|
logits = F.sigmoid(self.score(hidden_states).squeeze()) |
|
|
|
loss = None |
|
if labels is not None: |
|
labels = labels.type_as(logits) |
|
loss_fct = nn.MSELoss() |
|
loss = loss_fct(logits.view(-1), labels.view(-1)/4) |
|
|
|
return loss, logits |
|
|