File size: 5,266 Bytes
ac1f107 e629343 e4f713c ac1f107 e629343 c64edea e629343 c64edea e629343 22be545 e629343 25b2d8c e629343 25b2d8c e629343 e4f713c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
---
language:
- en
license: mit
model-index:
- name: MoMo-72B-lora-1.8.7-DPO
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 70.82
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=moreh/MoMo-72B-lora-1.8.7-DPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 85.96
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=moreh/MoMo-72B-lora-1.8.7-DPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 77.13
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=moreh/MoMo-72B-lora-1.8.7-DPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 74.71
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=moreh/MoMo-72B-lora-1.8.7-DPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 84.06
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=moreh/MoMo-72B-lora-1.8.7-DPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 78.62
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=moreh/MoMo-72B-lora-1.8.7-DPO
name: Open LLM Leaderboard
---
# **Introduction**
MoMo-72B-lora-1.8.7-DPO is trained via Direct Preference Optimization([DPO](https://arxiv.org/abs/2305.18290)) from [MoMo-72B-LoRA-V1.4](https://huggingface.co/moreh/MoMo-72B-LoRA-V1.4) as its base model, with several optimizations in hyperparameters.
[MoMo-72B-LoRA-V1.4](https://huggingface.co/moreh/MoMo-72B-LoRA-V1.4) is trained via Supervised Fine-Tuning (SFT) using [LoRA](https://arxiv.org/abs/2106.09685), with the QWEN-72B model as its base-model.
Note that we did not exploit any form of weight merge.
For leaderboard submission, the trained weight is realigned for compatibility with llama.
MoMo-72B is trained using **[Moreh](https://moreh.io/)**'s [MoAI platform](https://moreh.io/product), which simplifies the training of large-scale models, and AMD's MI250 GPU.
## Details
### Used Librarys
- torch
- peft
### Used Datasets
- [slimorca](Open-Orca/SlimOrca)
- [truthy](https://huggingface.co/datasets/jondurbin/truthy-dpo-v0.1)
- [orca_dpo_pairs](https://huggingface.co/datasets/Intel/orca_dpo_pairs)
- No other dataset was used
- No benchmark test set or the training set are used
- [data contamination check](https://github.com/swj0419/detect-pretrain-code-contamination) result
| Model | ARC | MMLU | TruthfulQA | GSM8K |
|------------------------------|-------|-------|-------|-------|
| **V1.8.7(result < 0.1, %)**| TBU |TBU | 0.44 | 0.47 |
### Used Environments
- AMD MI250 & MoAI platform
- Please visit https://moreh.io/product for more information about MoAI platform
- Or, contact us directly [[email protected]](mailto:[email protected])
## How to use
```python
# pip install transformers==4.35.2
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("moreh/MoMo-72B-lora-1.8.7-DPO")
model = AutoModelForCausalLM.from_pretrained(
"moreh/MoMo-72B-lora-1.8.7-DPO"
)
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_moreh__MoMo-72B-lora-1.8.7-DPO)
| Metric |Value|
|---------------------------------|----:|
|Avg. |78.55|
|AI2 Reasoning Challenge (25-Shot)|70.82|
|HellaSwag (10-Shot) |85.96|
|MMLU (5-Shot) |77.13|
|TruthfulQA (0-shot) |74.71|
|Winogrande (5-shot) |84.06|
|GSM8k (5-shot) |78.62|
|