moritzglnr
commited on
Add new SentenceTransformer model.
Browse files- README.md +223 -213
- config.json +1 -1
- config_sentence_transformers.json +2 -2
- model.safetensors +1 -1
README.md
CHANGED
@@ -31,50 +31,48 @@ tags:
|
|
31 |
- loss:MatryoshkaLoss
|
32 |
- loss:MultipleNegativesRankingLoss
|
33 |
widget:
|
34 |
-
- source_sentence:
|
35 |
-
|
|
|
36 |
sentences:
|
37 |
-
- What was the
|
38 |
-
|
39 |
-
- How
|
40 |
-
|
41 |
-
-
|
42 |
-
|
43 |
-
|
44 |
-
Correction Mechanism (price cap), or interventions that may be proposed in the
|
45 |
-
future related to the Russia-Ukraine conflict or the conflict in Israel and Gaza
|
46 |
-
could also have a negative impact on our business.
|
47 |
sentences:
|
48 |
-
-
|
49 |
-
|
50 |
-
|
51 |
-
-
|
52 |
-
|
53 |
-
|
|
|
54 |
sentences:
|
55 |
-
- What was the primary reason for the
|
56 |
-
|
57 |
-
-
|
58 |
-
- What was the
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
sentences:
|
63 |
-
- What
|
64 |
-
|
65 |
-
- What are the
|
66 |
-
|
67 |
-
-
|
68 |
-
|
69 |
-
- source_sentence: The
|
70 |
-
|
71 |
-
netting or collateral.
|
72 |
sentences:
|
73 |
-
- What was the total
|
74 |
-
|
75 |
-
-
|
76 |
-
-
|
77 |
-
|
78 |
model-index:
|
79 |
- name: BGE base Financial Matryoshka
|
80 |
results:
|
@@ -86,49 +84,49 @@ model-index:
|
|
86 |
type: dim_768
|
87 |
metrics:
|
88 |
- type: cosine_accuracy@1
|
89 |
-
value: 0.
|
90 |
name: Cosine Accuracy@1
|
91 |
- type: cosine_accuracy@3
|
92 |
-
value: 0.
|
93 |
name: Cosine Accuracy@3
|
94 |
- type: cosine_accuracy@5
|
95 |
-
value: 0.
|
96 |
name: Cosine Accuracy@5
|
97 |
- type: cosine_accuracy@10
|
98 |
-
value: 0.
|
99 |
name: Cosine Accuracy@10
|
100 |
- type: cosine_precision@1
|
101 |
-
value: 0.
|
102 |
name: Cosine Precision@1
|
103 |
- type: cosine_precision@3
|
104 |
-
value: 0.
|
105 |
name: Cosine Precision@3
|
106 |
- type: cosine_precision@5
|
107 |
-
value: 0.
|
108 |
name: Cosine Precision@5
|
109 |
- type: cosine_precision@10
|
110 |
-
value: 0.
|
111 |
name: Cosine Precision@10
|
112 |
- type: cosine_recall@1
|
113 |
-
value: 0.
|
114 |
name: Cosine Recall@1
|
115 |
- type: cosine_recall@3
|
116 |
-
value: 0.
|
117 |
name: Cosine Recall@3
|
118 |
- type: cosine_recall@5
|
119 |
-
value: 0.
|
120 |
name: Cosine Recall@5
|
121 |
- type: cosine_recall@10
|
122 |
-
value: 0.
|
123 |
name: Cosine Recall@10
|
124 |
- type: cosine_ndcg@10
|
125 |
-
value: 0.
|
126 |
name: Cosine Ndcg@10
|
127 |
- type: cosine_mrr@10
|
128 |
-
value: 0.
|
129 |
name: Cosine Mrr@10
|
130 |
- type: cosine_map@100
|
131 |
-
value: 0.
|
132 |
name: Cosine Map@100
|
133 |
- task:
|
134 |
type: information-retrieval
|
@@ -138,49 +136,49 @@ model-index:
|
|
138 |
type: dim_512
|
139 |
metrics:
|
140 |
- type: cosine_accuracy@1
|
141 |
-
value: 0.
|
142 |
name: Cosine Accuracy@1
|
143 |
- type: cosine_accuracy@3
|
144 |
-
value: 0.
|
145 |
name: Cosine Accuracy@3
|
146 |
- type: cosine_accuracy@5
|
147 |
-
value: 0.
|
148 |
name: Cosine Accuracy@5
|
149 |
- type: cosine_accuracy@10
|
150 |
-
value: 0.
|
151 |
name: Cosine Accuracy@10
|
152 |
- type: cosine_precision@1
|
153 |
-
value: 0.
|
154 |
name: Cosine Precision@1
|
155 |
- type: cosine_precision@3
|
156 |
-
value: 0.
|
157 |
name: Cosine Precision@3
|
158 |
- type: cosine_precision@5
|
159 |
-
value: 0.
|
160 |
name: Cosine Precision@5
|
161 |
- type: cosine_precision@10
|
162 |
-
value: 0.
|
163 |
name: Cosine Precision@10
|
164 |
- type: cosine_recall@1
|
165 |
-
value: 0.
|
166 |
name: Cosine Recall@1
|
167 |
- type: cosine_recall@3
|
168 |
-
value: 0.
|
169 |
name: Cosine Recall@3
|
170 |
- type: cosine_recall@5
|
171 |
-
value: 0.
|
172 |
name: Cosine Recall@5
|
173 |
- type: cosine_recall@10
|
174 |
-
value: 0.
|
175 |
name: Cosine Recall@10
|
176 |
- type: cosine_ndcg@10
|
177 |
-
value: 0.
|
178 |
name: Cosine Ndcg@10
|
179 |
- type: cosine_mrr@10
|
180 |
-
value: 0.
|
181 |
name: Cosine Mrr@10
|
182 |
- type: cosine_map@100
|
183 |
-
value: 0.
|
184 |
name: Cosine Map@100
|
185 |
- task:
|
186 |
type: information-retrieval
|
@@ -190,49 +188,49 @@ model-index:
|
|
190 |
type: dim_256
|
191 |
metrics:
|
192 |
- type: cosine_accuracy@1
|
193 |
-
value: 0.
|
194 |
name: Cosine Accuracy@1
|
195 |
- type: cosine_accuracy@3
|
196 |
-
value: 0.
|
197 |
name: Cosine Accuracy@3
|
198 |
- type: cosine_accuracy@5
|
199 |
-
value: 0.
|
200 |
name: Cosine Accuracy@5
|
201 |
- type: cosine_accuracy@10
|
202 |
-
value: 0.
|
203 |
name: Cosine Accuracy@10
|
204 |
- type: cosine_precision@1
|
205 |
-
value: 0.
|
206 |
name: Cosine Precision@1
|
207 |
- type: cosine_precision@3
|
208 |
-
value: 0.
|
209 |
name: Cosine Precision@3
|
210 |
- type: cosine_precision@5
|
211 |
-
value: 0.
|
212 |
name: Cosine Precision@5
|
213 |
- type: cosine_precision@10
|
214 |
-
value: 0.
|
215 |
name: Cosine Precision@10
|
216 |
- type: cosine_recall@1
|
217 |
-
value: 0.
|
218 |
name: Cosine Recall@1
|
219 |
- type: cosine_recall@3
|
220 |
-
value: 0.
|
221 |
name: Cosine Recall@3
|
222 |
- type: cosine_recall@5
|
223 |
-
value: 0.
|
224 |
name: Cosine Recall@5
|
225 |
- type: cosine_recall@10
|
226 |
-
value: 0.
|
227 |
name: Cosine Recall@10
|
228 |
- type: cosine_ndcg@10
|
229 |
-
value: 0.
|
230 |
name: Cosine Ndcg@10
|
231 |
- type: cosine_mrr@10
|
232 |
-
value: 0.
|
233 |
name: Cosine Mrr@10
|
234 |
- type: cosine_map@100
|
235 |
-
value: 0.
|
236 |
name: Cosine Map@100
|
237 |
- task:
|
238 |
type: information-retrieval
|
@@ -242,49 +240,49 @@ model-index:
|
|
242 |
type: dim_128
|
243 |
metrics:
|
244 |
- type: cosine_accuracy@1
|
245 |
-
value: 0.
|
246 |
name: Cosine Accuracy@1
|
247 |
- type: cosine_accuracy@3
|
248 |
-
value: 0.
|
249 |
name: Cosine Accuracy@3
|
250 |
- type: cosine_accuracy@5
|
251 |
-
value: 0.
|
252 |
name: Cosine Accuracy@5
|
253 |
- type: cosine_accuracy@10
|
254 |
-
value: 0.
|
255 |
name: Cosine Accuracy@10
|
256 |
- type: cosine_precision@1
|
257 |
-
value: 0.
|
258 |
name: Cosine Precision@1
|
259 |
- type: cosine_precision@3
|
260 |
-
value: 0.
|
261 |
name: Cosine Precision@3
|
262 |
- type: cosine_precision@5
|
263 |
-
value: 0.
|
264 |
name: Cosine Precision@5
|
265 |
- type: cosine_precision@10
|
266 |
-
value: 0.
|
267 |
name: Cosine Precision@10
|
268 |
- type: cosine_recall@1
|
269 |
-
value: 0.
|
270 |
name: Cosine Recall@1
|
271 |
- type: cosine_recall@3
|
272 |
-
value: 0.
|
273 |
name: Cosine Recall@3
|
274 |
- type: cosine_recall@5
|
275 |
-
value: 0.
|
276 |
name: Cosine Recall@5
|
277 |
- type: cosine_recall@10
|
278 |
-
value: 0.
|
279 |
name: Cosine Recall@10
|
280 |
- type: cosine_ndcg@10
|
281 |
-
value: 0.
|
282 |
name: Cosine Ndcg@10
|
283 |
- type: cosine_mrr@10
|
284 |
-
value: 0.
|
285 |
name: Cosine Mrr@10
|
286 |
- type: cosine_map@100
|
287 |
-
value: 0.
|
288 |
name: Cosine Map@100
|
289 |
- task:
|
290 |
type: information-retrieval
|
@@ -294,49 +292,49 @@ model-index:
|
|
294 |
type: dim_64
|
295 |
metrics:
|
296 |
- type: cosine_accuracy@1
|
297 |
-
value: 0.
|
298 |
name: Cosine Accuracy@1
|
299 |
- type: cosine_accuracy@3
|
300 |
-
value: 0.
|
301 |
name: Cosine Accuracy@3
|
302 |
- type: cosine_accuracy@5
|
303 |
-
value: 0.
|
304 |
name: Cosine Accuracy@5
|
305 |
- type: cosine_accuracy@10
|
306 |
-
value: 0.
|
307 |
name: Cosine Accuracy@10
|
308 |
- type: cosine_precision@1
|
309 |
-
value: 0.
|
310 |
name: Cosine Precision@1
|
311 |
- type: cosine_precision@3
|
312 |
-
value: 0.
|
313 |
name: Cosine Precision@3
|
314 |
- type: cosine_precision@5
|
315 |
-
value: 0.
|
316 |
name: Cosine Precision@5
|
317 |
- type: cosine_precision@10
|
318 |
-
value: 0.
|
319 |
name: Cosine Precision@10
|
320 |
- type: cosine_recall@1
|
321 |
-
value: 0.
|
322 |
name: Cosine Recall@1
|
323 |
- type: cosine_recall@3
|
324 |
-
value: 0.
|
325 |
name: Cosine Recall@3
|
326 |
- type: cosine_recall@5
|
327 |
-
value: 0.
|
328 |
name: Cosine Recall@5
|
329 |
- type: cosine_recall@10
|
330 |
-
value: 0.
|
331 |
name: Cosine Recall@10
|
332 |
- type: cosine_ndcg@10
|
333 |
-
value: 0.
|
334 |
name: Cosine Ndcg@10
|
335 |
- type: cosine_mrr@10
|
336 |
-
value: 0.
|
337 |
name: Cosine Mrr@10
|
338 |
- type: cosine_map@100
|
339 |
-
value: 0.
|
340 |
name: Cosine Map@100
|
341 |
---
|
342 |
|
@@ -390,9 +388,9 @@ from sentence_transformers import SentenceTransformer
|
|
390 |
model = SentenceTransformer("moritzglnr/bge-base-financial-matryoshka")
|
391 |
# Run inference
|
392 |
sentences = [
|
393 |
-
'The
|
394 |
-
'What was the total
|
395 |
-
'
|
396 |
]
|
397 |
embeddings = model.encode(sentences)
|
398 |
print(embeddings.shape)
|
@@ -436,67 +434,67 @@ You can finetune this model on your own dataset.
|
|
436 |
* Dataset: `dim_768`
|
437 |
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
438 |
|
439 |
-
| Metric | Value |
|
440 |
-
|:--------------------|:----------|
|
441 |
-
| cosine_accuracy@1 | 0.7071 |
|
442 |
-
| cosine_accuracy@3 | 0.8214 |
|
443 |
-
| cosine_accuracy@5 | 0.8614 |
|
444 |
-
| cosine_accuracy@10 | 0.9043 |
|
445 |
-
| cosine_precision@1 | 0.7071 |
|
446 |
-
| cosine_precision@3 | 0.2738 |
|
447 |
-
| cosine_precision@5 | 0.1723 |
|
448 |
-
| cosine_precision@10 | 0.0904 |
|
449 |
-
| cosine_recall@1 | 0.7071 |
|
450 |
-
| cosine_recall@3 | 0.8214 |
|
451 |
-
| cosine_recall@5 | 0.8614 |
|
452 |
-
| cosine_recall@10 | 0.9043 |
|
453 |
-
| cosine_ndcg@10 | 0.805 |
|
454 |
-
| cosine_mrr@10 | 0.7733 |
|
455 |
-
| **cosine_map@100** | **0.777** |
|
456 |
-
|
457 |
-
#### Information Retrieval
|
458 |
-
* Dataset: `dim_512`
|
459 |
-
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
460 |
-
|
461 |
| Metric | Value |
|
462 |
|:--------------------|:-----------|
|
463 |
-
| cosine_accuracy@1 | 0.
|
464 |
-
| cosine_accuracy@3 | 0.
|
465 |
-
| cosine_accuracy@5 | 0.
|
466 |
| cosine_accuracy@10 | 0.9057 |
|
467 |
-
| cosine_precision@1 | 0.
|
468 |
-
| cosine_precision@3 | 0.
|
469 |
-
| cosine_precision@5 | 0.
|
470 |
| cosine_precision@10 | 0.0906 |
|
471 |
-
| cosine_recall@1 | 0.
|
472 |
-
| cosine_recall@3 | 0.
|
473 |
-
| cosine_recall@5 | 0.
|
474 |
| cosine_recall@10 | 0.9057 |
|
475 |
-
| cosine_ndcg@10 | 0.
|
476 |
-
| cosine_mrr@10 | 0.
|
477 |
-
| **cosine_map@100** | **0.
|
478 |
|
479 |
#### Information Retrieval
|
480 |
-
* Dataset: `
|
481 |
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
482 |
|
483 |
| Metric | Value |
|
484 |
|:--------------------|:-----------|
|
485 |
-
| cosine_accuracy@1 | 0.
|
486 |
| cosine_accuracy@3 | 0.8157 |
|
487 |
-
| cosine_accuracy@5 | 0.
|
488 |
-
| cosine_accuracy@10 | 0.
|
489 |
-
| cosine_precision@1 | 0.
|
490 |
| cosine_precision@3 | 0.2719 |
|
491 |
-
| cosine_precision@5 | 0.
|
492 |
-
| cosine_precision@10 | 0.
|
493 |
-
| cosine_recall@1 | 0.
|
494 |
| cosine_recall@3 | 0.8157 |
|
495 |
-
| cosine_recall@5 | 0.
|
496 |
-
| cosine_recall@10 | 0.
|
497 |
-
| cosine_ndcg@10 | 0.
|
498 |
-
| cosine_mrr@10 | 0.
|
499 |
-
| **cosine_map@100** | **0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
500 |
|
501 |
#### Information Retrieval
|
502 |
* Dataset: `dim_128`
|
@@ -504,21 +502,21 @@ You can finetune this model on your own dataset.
|
|
504 |
|
505 |
| Metric | Value |
|
506 |
|:--------------------|:-----------|
|
507 |
-
| cosine_accuracy@1 | 0.
|
508 |
-
| cosine_accuracy@3 | 0.
|
509 |
-
| cosine_accuracy@5 | 0.
|
510 |
-
| cosine_accuracy@10 | 0.
|
511 |
-
| cosine_precision@1 | 0.
|
512 |
-
| cosine_precision@3 | 0.
|
513 |
-
| cosine_precision@5 | 0.
|
514 |
-
| cosine_precision@10 | 0.
|
515 |
-
| cosine_recall@1 | 0.
|
516 |
-
| cosine_recall@3 | 0.
|
517 |
-
| cosine_recall@5 | 0.
|
518 |
-
| cosine_recall@10 | 0.
|
519 |
-
| cosine_ndcg@10 | 0.
|
520 |
-
| cosine_mrr@10 | 0.
|
521 |
-
| **cosine_map@100** | **0.
|
522 |
|
523 |
#### Information Retrieval
|
524 |
* Dataset: `dim_64`
|
@@ -526,21 +524,21 @@ You can finetune this model on your own dataset.
|
|
526 |
|
527 |
| Metric | Value |
|
528 |
|:--------------------|:-----------|
|
529 |
-
| cosine_accuracy@1 | 0.
|
530 |
-
| cosine_accuracy@3 | 0.
|
531 |
-
| cosine_accuracy@5 | 0.
|
532 |
-
| cosine_accuracy@10 | 0.
|
533 |
-
| cosine_precision@1 | 0.
|
534 |
-
| cosine_precision@3 | 0.
|
535 |
-
| cosine_precision@5 | 0.
|
536 |
-
| cosine_precision@10 | 0.
|
537 |
-
| cosine_recall@1 | 0.
|
538 |
-
| cosine_recall@3 | 0.
|
539 |
-
| cosine_recall@5 | 0.
|
540 |
-
| cosine_recall@10 | 0.
|
541 |
-
| cosine_ndcg@10 | 0.
|
542 |
-
| cosine_mrr@10 | 0.
|
543 |
-
| **cosine_map@100** | **0.
|
544 |
|
545 |
<!--
|
546 |
## Bias, Risks and Limitations
|
@@ -567,13 +565,13 @@ You can finetune this model on your own dataset.
|
|
567 |
| | positive | anchor |
|
568 |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
569 |
| type | string | string |
|
570 |
-
| details | <ul><li>min: 2 tokens</li><li>mean:
|
571 |
* Samples:
|
572 |
-
| positive
|
573 |
-
|
574 |
-
| <code>
|
575 |
-
| <code>
|
576 |
-
| <code>The
|
577 |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
578 |
```json
|
579 |
{
|
@@ -599,15 +597,18 @@ You can finetune this model on your own dataset.
|
|
599 |
### Training Hyperparameters
|
600 |
#### Non-Default Hyperparameters
|
601 |
|
|
|
602 |
- `per_device_train_batch_size`: 32
|
603 |
- `per_device_eval_batch_size`: 16
|
604 |
- `gradient_accumulation_steps`: 16
|
605 |
- `learning_rate`: 2e-05
|
606 |
-
- `num_train_epochs`:
|
607 |
- `lr_scheduler_type`: cosine
|
608 |
- `warmup_ratio`: 0.1
|
609 |
-
- `
|
|
|
610 |
- `load_best_model_at_end`: True
|
|
|
611 |
- `batch_sampler`: no_duplicates
|
612 |
|
613 |
#### All Hyperparameters
|
@@ -615,6 +616,7 @@ You can finetune this model on your own dataset.
|
|
615 |
|
616 |
- `overwrite_output_dir`: False
|
617 |
- `do_predict`: False
|
|
|
618 |
- `prediction_loss_only`: True
|
619 |
- `per_device_train_batch_size`: 32
|
620 |
- `per_device_eval_batch_size`: 16
|
@@ -628,7 +630,7 @@ You can finetune this model on your own dataset.
|
|
628 |
- `adam_beta2`: 0.999
|
629 |
- `adam_epsilon`: 1e-08
|
630 |
- `max_grad_norm`: 1.0
|
631 |
-
- `num_train_epochs`:
|
632 |
- `max_steps`: -1
|
633 |
- `lr_scheduler_type`: cosine
|
634 |
- `lr_scheduler_kwargs`: {}
|
@@ -641,6 +643,7 @@ You can finetune this model on your own dataset.
|
|
641 |
- `save_safetensors`: True
|
642 |
- `save_on_each_node`: False
|
643 |
- `save_only_model`: False
|
|
|
644 |
- `no_cuda`: False
|
645 |
- `use_cpu`: False
|
646 |
- `use_mps_device`: False
|
@@ -648,13 +651,13 @@ You can finetune this model on your own dataset.
|
|
648 |
- `data_seed`: None
|
649 |
- `jit_mode_eval`: False
|
650 |
- `use_ipex`: False
|
651 |
-
- `bf16`:
|
652 |
- `fp16`: False
|
653 |
- `fp16_opt_level`: O1
|
654 |
- `half_precision_backend`: auto
|
655 |
- `bf16_full_eval`: False
|
656 |
- `fp16_full_eval`: False
|
657 |
-
- `tf32`:
|
658 |
- `local_rank`: 0
|
659 |
- `ddp_backend`: None
|
660 |
- `tpu_num_cores`: None
|
@@ -673,10 +676,10 @@ You can finetune this model on your own dataset.
|
|
673 |
- `fsdp_min_num_params`: 0
|
674 |
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
675 |
- `fsdp_transformer_layer_cls_to_wrap`: None
|
676 |
-
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}
|
677 |
- `deepspeed`: None
|
678 |
- `label_smoothing_factor`: 0.0
|
679 |
-
- `optim`:
|
680 |
- `optim_args`: None
|
681 |
- `adafactor`: False
|
682 |
- `group_by_length`: False
|
@@ -716,6 +719,7 @@ You can finetune this model on your own dataset.
|
|
716 |
- `include_num_input_tokens_seen`: False
|
717 |
- `neftune_noise_alpha`: None
|
718 |
- `optim_target_modules`: None
|
|
|
719 |
- `batch_sampler`: no_duplicates
|
720 |
- `multi_dataset_batch_sampler`: proportional
|
721 |
|
@@ -724,18 +728,24 @@ You can finetune this model on your own dataset.
|
|
724 |
### Training Logs
|
725 |
| Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|
726 |
|:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
|
727 |
-
| 0.8122 | 10 | 1.
|
728 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
729 |
|
730 |
* The bold row denotes the saved checkpoint.
|
731 |
|
732 |
### Framework Versions
|
733 |
-
- Python: 3.
|
734 |
- Sentence Transformers: 3.0.1
|
735 |
-
- Transformers: 4.
|
736 |
-
- PyTorch: 2.
|
737 |
- Accelerate: 0.32.1
|
738 |
-
- Datasets: 2.
|
739 |
- Tokenizers: 0.19.1
|
740 |
|
741 |
## Citation
|
|
|
31 |
- loss:MatryoshkaLoss
|
32 |
- loss:MultipleNegativesRankingLoss
|
33 |
widget:
|
34 |
+
- source_sentence: The table indicates that 18,000 deferred shares were granted to
|
35 |
+
non-employee directors in fiscal 2020, 15,000 in fiscal 2021, and 19,000 in fiscal
|
36 |
+
2022.
|
37 |
sentences:
|
38 |
+
- What was the primary reason for the increased audit effort for PCC goodwill and
|
39 |
+
indefinite-lived intangible assets?
|
40 |
+
- How many deferred shares were granted to non-employee directors in fiscal 2020,
|
41 |
+
2021, and 2022?
|
42 |
+
- What was the total intrinsic value of options exercised in fiscal year 2023?
|
43 |
+
- source_sentence: In Resource Masking Industries, we expect the profit impact from
|
44 |
+
lower sales volume to be partially offset by favorable price realization.
|
|
|
|
|
|
|
45 |
sentences:
|
46 |
+
- By what percentage did Electronic Arts' operating income grow in the fiscal year
|
47 |
+
ended March 31, 2023?
|
48 |
+
- What impact is expected on Resource Industries' profit due to lower sales volume?
|
49 |
+
- How are IBM’s 2023 Annual Report to Stockholders' financial statements made a
|
50 |
+
part of Form 10-K?
|
51 |
+
- source_sentence: The actuarial gain during the year ended December 31, 2022 was
|
52 |
+
primarily related to increases in the discount rate assumptions.
|
53 |
sentences:
|
54 |
+
- What was the primary reason for the actuarial gain during the year ended December
|
55 |
+
31, 2022?
|
56 |
+
- How much did Ford's total assets amount to by December 31, 2023?
|
57 |
+
- What was the remaining available amount of the share repurchase authorization
|
58 |
+
as of January 29, 2023?
|
59 |
+
- source_sentence: Returned $1.7 billion to shareholders through share repurchases
|
60 |
+
and dividend payments.
|
61 |
sentences:
|
62 |
+
- What was the carrying amount of investments without readily determinable fair
|
63 |
+
values as of December 31, 2023?
|
64 |
+
- What are the significant inputs to the valuation of Goldman Sachs' unsecured short-
|
65 |
+
and long-term borrowings?
|
66 |
+
- How much did the company return to shareholders through share repurchases and
|
67 |
+
dividend payments in 2022?
|
68 |
+
- source_sentence: The remaining amount available for borrowing under the Revolving
|
69 |
+
Credit Facility as of December 31, 2023, was $2,245.2 million.
|
|
|
70 |
sentences:
|
71 |
+
- What was the total amount available for borrowing under the Revolving Credit Facility
|
72 |
+
at Iron Mountain as of December 31, 2023?
|
73 |
+
- What type of information is included in Note 13 of the Annual Report on Form 10-K?
|
74 |
+
- How much did local currency revenue increase in Latin America in 2023 compared
|
75 |
+
to 2022?
|
76 |
model-index:
|
77 |
- name: BGE base Financial Matryoshka
|
78 |
results:
|
|
|
84 |
type: dim_768
|
85 |
metrics:
|
86 |
- type: cosine_accuracy@1
|
87 |
+
value: 0.6828571428571428
|
88 |
name: Cosine Accuracy@1
|
89 |
- type: cosine_accuracy@3
|
90 |
+
value: 0.8242857142857143
|
91 |
name: Cosine Accuracy@3
|
92 |
- type: cosine_accuracy@5
|
93 |
+
value: 0.8557142857142858
|
94 |
name: Cosine Accuracy@5
|
95 |
- type: cosine_accuracy@10
|
96 |
+
value: 0.9057142857142857
|
97 |
name: Cosine Accuracy@10
|
98 |
- type: cosine_precision@1
|
99 |
+
value: 0.6828571428571428
|
100 |
name: Cosine Precision@1
|
101 |
- type: cosine_precision@3
|
102 |
+
value: 0.2747619047619047
|
103 |
name: Cosine Precision@3
|
104 |
- type: cosine_precision@5
|
105 |
+
value: 0.17114285714285712
|
106 |
name: Cosine Precision@5
|
107 |
- type: cosine_precision@10
|
108 |
+
value: 0.09057142857142855
|
109 |
name: Cosine Precision@10
|
110 |
- type: cosine_recall@1
|
111 |
+
value: 0.6828571428571428
|
112 |
name: Cosine Recall@1
|
113 |
- type: cosine_recall@3
|
114 |
+
value: 0.8242857142857143
|
115 |
name: Cosine Recall@3
|
116 |
- type: cosine_recall@5
|
117 |
+
value: 0.8557142857142858
|
118 |
name: Cosine Recall@5
|
119 |
- type: cosine_recall@10
|
120 |
+
value: 0.9057142857142857
|
121 |
name: Cosine Recall@10
|
122 |
- type: cosine_ndcg@10
|
123 |
+
value: 0.7963610970343802
|
124 |
name: Cosine Ndcg@10
|
125 |
- type: cosine_mrr@10
|
126 |
+
value: 0.7612930839002267
|
127 |
name: Cosine Mrr@10
|
128 |
- type: cosine_map@100
|
129 |
+
value: 0.7648513048205645
|
130 |
name: Cosine Map@100
|
131 |
- task:
|
132 |
type: information-retrieval
|
|
|
136 |
type: dim_512
|
137 |
metrics:
|
138 |
- type: cosine_accuracy@1
|
139 |
+
value: 0.68
|
140 |
name: Cosine Accuracy@1
|
141 |
- type: cosine_accuracy@3
|
142 |
+
value: 0.8157142857142857
|
143 |
name: Cosine Accuracy@3
|
144 |
- type: cosine_accuracy@5
|
145 |
+
value: 0.8542857142857143
|
146 |
name: Cosine Accuracy@5
|
147 |
- type: cosine_accuracy@10
|
148 |
+
value: 0.9
|
149 |
name: Cosine Accuracy@10
|
150 |
- type: cosine_precision@1
|
151 |
+
value: 0.68
|
152 |
name: Cosine Precision@1
|
153 |
- type: cosine_precision@3
|
154 |
+
value: 0.27190476190476187
|
155 |
name: Cosine Precision@3
|
156 |
- type: cosine_precision@5
|
157 |
+
value: 0.17085714285714285
|
158 |
name: Cosine Precision@5
|
159 |
- type: cosine_precision@10
|
160 |
+
value: 0.09
|
161 |
name: Cosine Precision@10
|
162 |
- type: cosine_recall@1
|
163 |
+
value: 0.68
|
164 |
name: Cosine Recall@1
|
165 |
- type: cosine_recall@3
|
166 |
+
value: 0.8157142857142857
|
167 |
name: Cosine Recall@3
|
168 |
- type: cosine_recall@5
|
169 |
+
value: 0.8542857142857143
|
170 |
name: Cosine Recall@5
|
171 |
- type: cosine_recall@10
|
172 |
+
value: 0.9
|
173 |
name: Cosine Recall@10
|
174 |
- type: cosine_ndcg@10
|
175 |
+
value: 0.7911616934987842
|
176 |
name: Cosine Ndcg@10
|
177 |
- type: cosine_mrr@10
|
178 |
+
value: 0.7562284580498863
|
179 |
name: Cosine Mrr@10
|
180 |
- type: cosine_map@100
|
181 |
+
value: 0.760087172570928
|
182 |
name: Cosine Map@100
|
183 |
- task:
|
184 |
type: information-retrieval
|
|
|
188 |
type: dim_256
|
189 |
metrics:
|
190 |
- type: cosine_accuracy@1
|
191 |
+
value: 0.68
|
192 |
name: Cosine Accuracy@1
|
193 |
- type: cosine_accuracy@3
|
194 |
+
value: 0.8114285714285714
|
195 |
name: Cosine Accuracy@3
|
196 |
- type: cosine_accuracy@5
|
197 |
+
value: 0.8485714285714285
|
198 |
name: Cosine Accuracy@5
|
199 |
- type: cosine_accuracy@10
|
200 |
+
value: 0.8971428571428571
|
201 |
name: Cosine Accuracy@10
|
202 |
- type: cosine_precision@1
|
203 |
+
value: 0.68
|
204 |
name: Cosine Precision@1
|
205 |
- type: cosine_precision@3
|
206 |
+
value: 0.2704761904761905
|
207 |
name: Cosine Precision@3
|
208 |
- type: cosine_precision@5
|
209 |
+
value: 0.16971428571428568
|
210 |
name: Cosine Precision@5
|
211 |
- type: cosine_precision@10
|
212 |
+
value: 0.0897142857142857
|
213 |
name: Cosine Precision@10
|
214 |
- type: cosine_recall@1
|
215 |
+
value: 0.68
|
216 |
name: Cosine Recall@1
|
217 |
- type: cosine_recall@3
|
218 |
+
value: 0.8114285714285714
|
219 |
name: Cosine Recall@3
|
220 |
- type: cosine_recall@5
|
221 |
+
value: 0.8485714285714285
|
222 |
name: Cosine Recall@5
|
223 |
- type: cosine_recall@10
|
224 |
+
value: 0.8971428571428571
|
225 |
name: Cosine Recall@10
|
226 |
- type: cosine_ndcg@10
|
227 |
+
value: 0.7888581850866868
|
228 |
name: Cosine Ndcg@10
|
229 |
- type: cosine_mrr@10
|
230 |
+
value: 0.7542278911564625
|
231 |
name: Cosine Mrr@10
|
232 |
- type: cosine_map@100
|
233 |
+
value: 0.7579536807505182
|
234 |
name: Cosine Map@100
|
235 |
- task:
|
236 |
type: information-retrieval
|
|
|
240 |
type: dim_128
|
241 |
metrics:
|
242 |
- type: cosine_accuracy@1
|
243 |
+
value: 0.6571428571428571
|
244 |
name: Cosine Accuracy@1
|
245 |
- type: cosine_accuracy@3
|
246 |
+
value: 0.79
|
247 |
name: Cosine Accuracy@3
|
248 |
- type: cosine_accuracy@5
|
249 |
+
value: 0.8285714285714286
|
250 |
name: Cosine Accuracy@5
|
251 |
- type: cosine_accuracy@10
|
252 |
+
value: 0.8857142857142857
|
253 |
name: Cosine Accuracy@10
|
254 |
- type: cosine_precision@1
|
255 |
+
value: 0.6571428571428571
|
256 |
name: Cosine Precision@1
|
257 |
- type: cosine_precision@3
|
258 |
+
value: 0.2633333333333333
|
259 |
name: Cosine Precision@3
|
260 |
- type: cosine_precision@5
|
261 |
+
value: 0.1657142857142857
|
262 |
name: Cosine Precision@5
|
263 |
- type: cosine_precision@10
|
264 |
+
value: 0.08857142857142856
|
265 |
name: Cosine Precision@10
|
266 |
- type: cosine_recall@1
|
267 |
+
value: 0.6571428571428571
|
268 |
name: Cosine Recall@1
|
269 |
- type: cosine_recall@3
|
270 |
+
value: 0.79
|
271 |
name: Cosine Recall@3
|
272 |
- type: cosine_recall@5
|
273 |
+
value: 0.8285714285714286
|
274 |
name: Cosine Recall@5
|
275 |
- type: cosine_recall@10
|
276 |
+
value: 0.8857142857142857
|
277 |
name: Cosine Recall@10
|
278 |
- type: cosine_ndcg@10
|
279 |
+
value: 0.7703812626851927
|
280 |
name: Cosine Ndcg@10
|
281 |
- type: cosine_mrr@10
|
282 |
+
value: 0.733632653061224
|
283 |
name: Cosine Mrr@10
|
284 |
- type: cosine_map@100
|
285 |
+
value: 0.7378840513025602
|
286 |
name: Cosine Map@100
|
287 |
- task:
|
288 |
type: information-retrieval
|
|
|
292 |
type: dim_64
|
293 |
metrics:
|
294 |
- type: cosine_accuracy@1
|
295 |
+
value: 0.62
|
296 |
name: Cosine Accuracy@1
|
297 |
- type: cosine_accuracy@3
|
298 |
+
value: 0.77
|
299 |
name: Cosine Accuracy@3
|
300 |
- type: cosine_accuracy@5
|
301 |
+
value: 0.8028571428571428
|
302 |
name: Cosine Accuracy@5
|
303 |
- type: cosine_accuracy@10
|
304 |
+
value: 0.85
|
305 |
name: Cosine Accuracy@10
|
306 |
- type: cosine_precision@1
|
307 |
+
value: 0.62
|
308 |
name: Cosine Precision@1
|
309 |
- type: cosine_precision@3
|
310 |
+
value: 0.25666666666666665
|
311 |
name: Cosine Precision@3
|
312 |
- type: cosine_precision@5
|
313 |
+
value: 0.16057142857142856
|
314 |
name: Cosine Precision@5
|
315 |
- type: cosine_precision@10
|
316 |
+
value: 0.085
|
317 |
name: Cosine Precision@10
|
318 |
- type: cosine_recall@1
|
319 |
+
value: 0.62
|
320 |
name: Cosine Recall@1
|
321 |
- type: cosine_recall@3
|
322 |
+
value: 0.77
|
323 |
name: Cosine Recall@3
|
324 |
- type: cosine_recall@5
|
325 |
+
value: 0.8028571428571428
|
326 |
name: Cosine Recall@5
|
327 |
- type: cosine_recall@10
|
328 |
+
value: 0.85
|
329 |
name: Cosine Recall@10
|
330 |
- type: cosine_ndcg@10
|
331 |
+
value: 0.73777886683529
|
332 |
name: Cosine Ndcg@10
|
333 |
- type: cosine_mrr@10
|
334 |
+
value: 0.7016190476190474
|
335 |
name: Cosine Mrr@10
|
336 |
- type: cosine_map@100
|
337 |
+
value: 0.7073607864232172
|
338 |
name: Cosine Map@100
|
339 |
---
|
340 |
|
|
|
388 |
model = SentenceTransformer("moritzglnr/bge-base-financial-matryoshka")
|
389 |
# Run inference
|
390 |
sentences = [
|
391 |
+
'The remaining amount available for borrowing under the Revolving Credit Facility as of December 31, 2023, was $2,245.2 million.',
|
392 |
+
'What was the total amount available for borrowing under the Revolving Credit Facility at Iron Mountain as of December 31, 2023?',
|
393 |
+
'What type of information is included in Note 13 of the Annual Report on Form 10-K?',
|
394 |
]
|
395 |
embeddings = model.encode(sentences)
|
396 |
print(embeddings.shape)
|
|
|
434 |
* Dataset: `dim_768`
|
435 |
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
436 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
437 |
| Metric | Value |
|
438 |
|:--------------------|:-----------|
|
439 |
+
| cosine_accuracy@1 | 0.6829 |
|
440 |
+
| cosine_accuracy@3 | 0.8243 |
|
441 |
+
| cosine_accuracy@5 | 0.8557 |
|
442 |
| cosine_accuracy@10 | 0.9057 |
|
443 |
+
| cosine_precision@1 | 0.6829 |
|
444 |
+
| cosine_precision@3 | 0.2748 |
|
445 |
+
| cosine_precision@5 | 0.1711 |
|
446 |
| cosine_precision@10 | 0.0906 |
|
447 |
+
| cosine_recall@1 | 0.6829 |
|
448 |
+
| cosine_recall@3 | 0.8243 |
|
449 |
+
| cosine_recall@5 | 0.8557 |
|
450 |
| cosine_recall@10 | 0.9057 |
|
451 |
+
| cosine_ndcg@10 | 0.7964 |
|
452 |
+
| cosine_mrr@10 | 0.7613 |
|
453 |
+
| **cosine_map@100** | **0.7649** |
|
454 |
|
455 |
#### Information Retrieval
|
456 |
+
* Dataset: `dim_512`
|
457 |
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
458 |
|
459 |
| Metric | Value |
|
460 |
|:--------------------|:-----------|
|
461 |
+
| cosine_accuracy@1 | 0.68 |
|
462 |
| cosine_accuracy@3 | 0.8157 |
|
463 |
+
| cosine_accuracy@5 | 0.8543 |
|
464 |
+
| cosine_accuracy@10 | 0.9 |
|
465 |
+
| cosine_precision@1 | 0.68 |
|
466 |
| cosine_precision@3 | 0.2719 |
|
467 |
+
| cosine_precision@5 | 0.1709 |
|
468 |
+
| cosine_precision@10 | 0.09 |
|
469 |
+
| cosine_recall@1 | 0.68 |
|
470 |
| cosine_recall@3 | 0.8157 |
|
471 |
+
| cosine_recall@5 | 0.8543 |
|
472 |
+
| cosine_recall@10 | 0.9 |
|
473 |
+
| cosine_ndcg@10 | 0.7912 |
|
474 |
+
| cosine_mrr@10 | 0.7562 |
|
475 |
+
| **cosine_map@100** | **0.7601** |
|
476 |
+
|
477 |
+
#### Information Retrieval
|
478 |
+
* Dataset: `dim_256`
|
479 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
480 |
+
|
481 |
+
| Metric | Value |
|
482 |
+
|:--------------------|:----------|
|
483 |
+
| cosine_accuracy@1 | 0.68 |
|
484 |
+
| cosine_accuracy@3 | 0.8114 |
|
485 |
+
| cosine_accuracy@5 | 0.8486 |
|
486 |
+
| cosine_accuracy@10 | 0.8971 |
|
487 |
+
| cosine_precision@1 | 0.68 |
|
488 |
+
| cosine_precision@3 | 0.2705 |
|
489 |
+
| cosine_precision@5 | 0.1697 |
|
490 |
+
| cosine_precision@10 | 0.0897 |
|
491 |
+
| cosine_recall@1 | 0.68 |
|
492 |
+
| cosine_recall@3 | 0.8114 |
|
493 |
+
| cosine_recall@5 | 0.8486 |
|
494 |
+
| cosine_recall@10 | 0.8971 |
|
495 |
+
| cosine_ndcg@10 | 0.7889 |
|
496 |
+
| cosine_mrr@10 | 0.7542 |
|
497 |
+
| **cosine_map@100** | **0.758** |
|
498 |
|
499 |
#### Information Retrieval
|
500 |
* Dataset: `dim_128`
|
|
|
502 |
|
503 |
| Metric | Value |
|
504 |
|:--------------------|:-----------|
|
505 |
+
| cosine_accuracy@1 | 0.6571 |
|
506 |
+
| cosine_accuracy@3 | 0.79 |
|
507 |
+
| cosine_accuracy@5 | 0.8286 |
|
508 |
+
| cosine_accuracy@10 | 0.8857 |
|
509 |
+
| cosine_precision@1 | 0.6571 |
|
510 |
+
| cosine_precision@3 | 0.2633 |
|
511 |
+
| cosine_precision@5 | 0.1657 |
|
512 |
+
| cosine_precision@10 | 0.0886 |
|
513 |
+
| cosine_recall@1 | 0.6571 |
|
514 |
+
| cosine_recall@3 | 0.79 |
|
515 |
+
| cosine_recall@5 | 0.8286 |
|
516 |
+
| cosine_recall@10 | 0.8857 |
|
517 |
+
| cosine_ndcg@10 | 0.7704 |
|
518 |
+
| cosine_mrr@10 | 0.7336 |
|
519 |
+
| **cosine_map@100** | **0.7379** |
|
520 |
|
521 |
#### Information Retrieval
|
522 |
* Dataset: `dim_64`
|
|
|
524 |
|
525 |
| Metric | Value |
|
526 |
|:--------------------|:-----------|
|
527 |
+
| cosine_accuracy@1 | 0.62 |
|
528 |
+
| cosine_accuracy@3 | 0.77 |
|
529 |
+
| cosine_accuracy@5 | 0.8029 |
|
530 |
+
| cosine_accuracy@10 | 0.85 |
|
531 |
+
| cosine_precision@1 | 0.62 |
|
532 |
+
| cosine_precision@3 | 0.2567 |
|
533 |
+
| cosine_precision@5 | 0.1606 |
|
534 |
+
| cosine_precision@10 | 0.085 |
|
535 |
+
| cosine_recall@1 | 0.62 |
|
536 |
+
| cosine_recall@3 | 0.77 |
|
537 |
+
| cosine_recall@5 | 0.8029 |
|
538 |
+
| cosine_recall@10 | 0.85 |
|
539 |
+
| cosine_ndcg@10 | 0.7378 |
|
540 |
+
| cosine_mrr@10 | 0.7016 |
|
541 |
+
| **cosine_map@100** | **0.7074** |
|
542 |
|
543 |
<!--
|
544 |
## Bias, Risks and Limitations
|
|
|
565 |
| | positive | anchor |
|
566 |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
567 |
| type | string | string |
|
568 |
+
| details | <ul><li>min: 2 tokens</li><li>mean: 46.27 tokens</li><li>max: 326 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 20.87 tokens</li><li>max: 51 tokens</li></ul> |
|
569 |
* Samples:
|
570 |
+
| positive | anchor |
|
571 |
+
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------|
|
572 |
+
| <code>We utilize a full yield curve approach in the estimation of service and interest costs by applying the specific spot rates along the yield curve used in the determination of the benefit obligation to the relevant projected cash flows. This approach provides a more precise measurement of service and interest costs by improving the correlation between the projected cash flows to the corresponding spot rates along the yield curve. This approach does not affect the measurement of our pension and other post-retirement benefit liabilities but generally results in lower benefit expense in periods when the yield curve is upward sloping.</code> | <code>How does the use of a full yield curve approach in estimating pension costs affect the measurement of liabilities and expenses?</code> |
|
573 |
+
| <code>Ending | 8,134 | | 8,206 | | 16,340 | | 8,061 | | 8,016 | 16,077</code> | <code>What was the ending store count for the Family Dollar segment after the fiscal year ended January 28, 2023?</code> |
|
574 |
+
| <code>The company's capital expenditures for 2024 are expected to be approximately $5.7 billion.</code> | <code>How much does the company expect to spend on capital expenditures in 2024?</code> |
|
575 |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
576 |
```json
|
577 |
{
|
|
|
597 |
### Training Hyperparameters
|
598 |
#### Non-Default Hyperparameters
|
599 |
|
600 |
+
- `eval_strategy`: epoch
|
601 |
- `per_device_train_batch_size`: 32
|
602 |
- `per_device_eval_batch_size`: 16
|
603 |
- `gradient_accumulation_steps`: 16
|
604 |
- `learning_rate`: 2e-05
|
605 |
+
- `num_train_epochs`: 4
|
606 |
- `lr_scheduler_type`: cosine
|
607 |
- `warmup_ratio`: 0.1
|
608 |
+
- `bf16`: True
|
609 |
+
- `tf32`: True
|
610 |
- `load_best_model_at_end`: True
|
611 |
+
- `optim`: adamw_torch_fused
|
612 |
- `batch_sampler`: no_duplicates
|
613 |
|
614 |
#### All Hyperparameters
|
|
|
616 |
|
617 |
- `overwrite_output_dir`: False
|
618 |
- `do_predict`: False
|
619 |
+
- `eval_strategy`: epoch
|
620 |
- `prediction_loss_only`: True
|
621 |
- `per_device_train_batch_size`: 32
|
622 |
- `per_device_eval_batch_size`: 16
|
|
|
630 |
- `adam_beta2`: 0.999
|
631 |
- `adam_epsilon`: 1e-08
|
632 |
- `max_grad_norm`: 1.0
|
633 |
+
- `num_train_epochs`: 4
|
634 |
- `max_steps`: -1
|
635 |
- `lr_scheduler_type`: cosine
|
636 |
- `lr_scheduler_kwargs`: {}
|
|
|
643 |
- `save_safetensors`: True
|
644 |
- `save_on_each_node`: False
|
645 |
- `save_only_model`: False
|
646 |
+
- `restore_callback_states_from_checkpoint`: False
|
647 |
- `no_cuda`: False
|
648 |
- `use_cpu`: False
|
649 |
- `use_mps_device`: False
|
|
|
651 |
- `data_seed`: None
|
652 |
- `jit_mode_eval`: False
|
653 |
- `use_ipex`: False
|
654 |
+
- `bf16`: True
|
655 |
- `fp16`: False
|
656 |
- `fp16_opt_level`: O1
|
657 |
- `half_precision_backend`: auto
|
658 |
- `bf16_full_eval`: False
|
659 |
- `fp16_full_eval`: False
|
660 |
+
- `tf32`: True
|
661 |
- `local_rank`: 0
|
662 |
- `ddp_backend`: None
|
663 |
- `tpu_num_cores`: None
|
|
|
676 |
- `fsdp_min_num_params`: 0
|
677 |
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
678 |
- `fsdp_transformer_layer_cls_to_wrap`: None
|
679 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
680 |
- `deepspeed`: None
|
681 |
- `label_smoothing_factor`: 0.0
|
682 |
+
- `optim`: adamw_torch_fused
|
683 |
- `optim_args`: None
|
684 |
- `adafactor`: False
|
685 |
- `group_by_length`: False
|
|
|
719 |
- `include_num_input_tokens_seen`: False
|
720 |
- `neftune_noise_alpha`: None
|
721 |
- `optim_target_modules`: None
|
722 |
+
- `batch_eval_metrics`: False
|
723 |
- `batch_sampler`: no_duplicates
|
724 |
- `multi_dataset_batch_sampler`: proportional
|
725 |
|
|
|
728 |
### Training Logs
|
729 |
| Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|
730 |
|:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
|
731 |
+
| 0.8122 | 10 | 1.5661 | - | - | - | - | - |
|
732 |
+
| 0.9746 | 12 | - | 0.7151 | 0.7378 | 0.7443 | 0.6680 | 0.7546 |
|
733 |
+
| 1.6244 | 20 | 0.6602 | - | - | - | - | - |
|
734 |
+
| 1.9492 | 24 | - | 0.7326 | 0.7533 | 0.7564 | 0.7037 | 0.7640 |
|
735 |
+
| 2.4365 | 30 | 0.4675 | - | - | - | - | - |
|
736 |
+
| 2.9239 | 36 | - | 0.7384 | 0.7575 | 0.7601 | 0.7086 | 0.7643 |
|
737 |
+
| 3.2487 | 40 | 0.3891 | - | - | - | - | - |
|
738 |
+
| **3.8985** | **48** | **-** | **0.7379** | **0.758** | **0.7601** | **0.7074** | **0.7649** |
|
739 |
|
740 |
* The bold row denotes the saved checkpoint.
|
741 |
|
742 |
### Framework Versions
|
743 |
+
- Python: 3.10.12
|
744 |
- Sentence Transformers: 3.0.1
|
745 |
+
- Transformers: 4.41.2
|
746 |
+
- PyTorch: 2.1.2+cu121
|
747 |
- Accelerate: 0.32.1
|
748 |
+
- Datasets: 2.19.1
|
749 |
- Tokenizers: 0.19.1
|
750 |
|
751 |
## Citation
|
config.json
CHANGED
@@ -25,7 +25,7 @@
|
|
25 |
"pad_token_id": 0,
|
26 |
"position_embedding_type": "absolute",
|
27 |
"torch_dtype": "float32",
|
28 |
-
"transformers_version": "4.
|
29 |
"type_vocab_size": 2,
|
30 |
"use_cache": true,
|
31 |
"vocab_size": 30522
|
|
|
25 |
"pad_token_id": 0,
|
26 |
"position_embedding_type": "absolute",
|
27 |
"torch_dtype": "float32",
|
28 |
+
"transformers_version": "4.41.2",
|
29 |
"type_vocab_size": 2,
|
30 |
"use_cache": true,
|
31 |
"vocab_size": 30522
|
config_sentence_transformers.json
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
{
|
2 |
"__version__": {
|
3 |
"sentence_transformers": "3.0.1",
|
4 |
-
"transformers": "4.
|
5 |
-
"pytorch": "2.
|
6 |
},
|
7 |
"prompts": {},
|
8 |
"default_prompt_name": null,
|
|
|
1 |
{
|
2 |
"__version__": {
|
3 |
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.41.2",
|
5 |
+
"pytorch": "2.1.2+cu121"
|
6 |
},
|
7 |
"prompts": {},
|
8 |
"default_prompt_name": null,
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 437951328
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3a4b3599c8539611169e8b7acd33e1e01633e1ff2df151e68a9df530a8550c09
|
3 |
size 437951328
|