morthens commited on
Commit
9deea94
·
verified ·
1 Parent(s): ec476d4

Create handler.py

Browse files
Files changed (1) hide show
  1. handler.py +84 -0
handler.py ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict, Any
2
+ from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
3
+ import torch
4
+ from PIL import Image
5
+ import requests
6
+ from io import BytesIO
7
+ import json
8
+
9
+ # Check for GPU
10
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
11
+
12
+
13
+ class EndpointHandler:
14
+ def __init__(self, path: str = ""):
15
+ """
16
+ Initializes the handler for the Qwen2-VL model.
17
+
18
+ Args:
19
+ path (str): Path to the model weights and processor. Defaults to the current directory.
20
+ """
21
+ # Load the processor and model
22
+ self.processor = AutoProcessor.from_pretrained(path)
23
+ self.model = Qwen2VLForConditionalGeneration.from_pretrained(
24
+ path,
25
+ torch_dtype="auto",
26
+ device_map="auto"
27
+ )
28
+ # Move the model to the appropriate device
29
+ self.model.to(device)
30
+
31
+ def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
32
+ """
33
+ Processes the input data and returns the model's prediction.
34
+
35
+ Args:
36
+ data (Dict[str, Any]): Input data containing `image_url` and `text`.
37
+
38
+ Returns:
39
+ Dict[str, Any]: The prediction or an error message.
40
+ """
41
+ image_url = data.get("image_url", "")
42
+ text = data.get("text", "")
43
+
44
+ # Load the image from the URL
45
+ try:
46
+ response = requests.get(image_url)
47
+ response.raise_for_status()
48
+ image = Image.open(BytesIO(response.content))
49
+ except Exception as e:
50
+ return {"error": f"Failed to fetch or process image: {str(e)}"}
51
+
52
+ # Prepare the text prompt
53
+ text_prompt = self.processor.apply_chat_template(
54
+ [{"role": "user", "content": [{"type": "text", "text": text}]}],
55
+ add_generation_prompt=True
56
+ )
57
+
58
+ # Preprocess the input
59
+ inputs = self.processor(
60
+ text=[text_prompt],
61
+ images=[image],
62
+ padding=True,
63
+ return_tensors="pt"
64
+ )
65
+
66
+ # Move inputs to the correct device
67
+ inputs = {key: value.to(device) for key, value in inputs.items()}
68
+
69
+ # Perform inference
70
+ output_ids = self.model.generate(**inputs, max_new_tokens=128)
71
+
72
+ # Decode the generated text
73
+ output_text = self.processor.batch_decode(
74
+ output_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
75
+ )[0]
76
+
77
+ # Clean and parse the JSON response
78
+ cleaned_data = output_text.replace("```json\n", "").replace("```", "").strip()
79
+ try:
80
+ prediction = json.loads(cleaned_data)
81
+ except json.JSONDecodeError as e:
82
+ return {"error": f"Failed to parse JSON output: {str(e)}", "raw_output": cleaned_data}
83
+
84
+ return {"prediction": prediction}