handler and requirements file creation
Browse files- handler.py +62 -0
- requirements.txt +1 -0
handler.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, Any
|
2 |
+
import torch
|
3 |
+
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
|
4 |
+
from PIL import Image
|
5 |
+
import requests
|
6 |
+
from io import BytesIO
|
7 |
+
|
8 |
+
# Check for GPU
|
9 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
10 |
+
|
11 |
+
class EndpointHandler:
|
12 |
+
def __init__(self, path: str = "morthens/qwen2-vl-7b-infer"):
|
13 |
+
# Load the processor and model
|
14 |
+
self.processor = AutoProcessor.from_pretrained(path)
|
15 |
+
self.model = Qwen2VLForConditionalGeneration.from_pretrained(
|
16 |
+
path,
|
17 |
+
torch_dtype="auto",
|
18 |
+
device_map="auto"
|
19 |
+
)
|
20 |
+
# Move the model to the appropriate device
|
21 |
+
self.model.to(device)
|
22 |
+
|
23 |
+
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
24 |
+
# Extract the input data
|
25 |
+
image_url = data.get("image_url", "")
|
26 |
+
text = data.get("text", "")
|
27 |
+
|
28 |
+
# Load the image from the URL
|
29 |
+
try:
|
30 |
+
response = requests.get(image_url)
|
31 |
+
response.raise_for_status()
|
32 |
+
image = Image.open(BytesIO(response.content))
|
33 |
+
except Exception as e:
|
34 |
+
return {"error": f"Failed to fetch or process image: {str(e)}"}
|
35 |
+
|
36 |
+
# Preprocess the input
|
37 |
+
inputs = self.processor(
|
38 |
+
text=[text],
|
39 |
+
images=[image],
|
40 |
+
padding=True,
|
41 |
+
return_tensors="pt"
|
42 |
+
)
|
43 |
+
|
44 |
+
# Move inputs to the correct device
|
45 |
+
inputs = {key: value.to(device) for key, value in inputs.items()}
|
46 |
+
|
47 |
+
# Perform inference
|
48 |
+
output_ids = self.model.generate(
|
49 |
+
**inputs,
|
50 |
+
max_new_tokens=128
|
51 |
+
)
|
52 |
+
|
53 |
+
# Decode the output
|
54 |
+
output_text = self.processor.batch_decode(
|
55 |
+
output_ids,
|
56 |
+
skip_special_tokens=True,
|
57 |
+
clean_up_tokenization_spaces=True
|
58 |
+
)[0]
|
59 |
+
|
60 |
+
# Return the raw prediction
|
61 |
+
return {"prediction": output_text}
|
62 |
+
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
transformers==4.45.0
|