File size: 4,012 Bytes
9674dc1
 
5f953ba
 
 
9674dc1
 
 
 
17d5f84
9674dc1
 
 
 
 
 
 
 
 
 
17d5f84
 
 
9674dc1
 
 
 
 
 
 
 
 
2ffdedb
 
 
 
 
 
 
 
 
 
 
 
 
9674dc1
5f953ba
 
 
9674dc1
5f953ba
 
 
9674dc1
17294a6
5f953ba
9674dc1
5f953ba
9674dc1
5f953ba
9674dc1
 
5f953ba
 
 
9674dc1
 
 
 
5f953ba
9674dc1
 
 
 
5f953ba
 
9674dc1
 
 
 
 
 
 
 
5f953ba
 
9674dc1
 
 
 
5f953ba
 
9674dc1
 
 
 
 
5f953ba
9674dc1
 
 
 
 
 
5f953ba
55eb0a7
 
9674dc1
 
 
5f953ba
 
 
9674dc1
5f953ba
 
 
9674dc1
5f953ba
 
 
9674dc1
5f953ba
9674dc1
 
 
 
 
 
 
 
 
5f953ba
 
 
 
9674dc1
 
 
 
 
 
 
5f953ba
 
 
9674dc1
 
 
5f953ba
 
 
 
 
 
9674dc1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
---
library_name: transformers
metrics:
- bleu : 0.67
- chrf : 0.73
---

# Model Card for Model ID

This is the Gemma-2b-IT model fine-tuned for the Python code generation task.


## Model Details

### Model Description

<!-- Provide a longer summary of what this model is. -->

This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.

- **Developed by:** Mohammed Ashraf
- **Model type:** google/gemma-2b
- **Finetuned from model [optional]:** google/gemma-2b-it


## Uses

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->

### Direct Use

<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
Use this model to generate Python code.



### Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
This model is trained on very basic Python code, so it might not be able to handle complex code.


## How to Get Started with the Model

Use the code below to get started with the model.

```python
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM

model_id = "mrSoul7766/gemma-2b-it-python-code-gen-adapter"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)

text = """<start_of_turn>how to covert json to dataframe.<end_of_turn>
<start_of_turn>model"""

#device = "cuda:0"

inputs = tokenizer(text, return_tensors="pt")


outputs = model.generate(**inputs, max_new_tokens=200)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```


## Training Details


### Training Data

<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->

**Fine-tuning Data:** [flytech/python-codes-25k](https://huggingface.co/datasets/flytech/python-codes-25k/viewer/default/train?p=2&row=294)


### Training Procedure 

<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->


#### Training Hyperparameters

- **Training regime:** fp16 <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
- **learning_rate:** 2e-4

## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->


### Testing Data & Metrics

#### Testing Data

<!-- This should link to a Dataset Card if possible. -->

[iamtarun/python_code_instructions_18k_alpaca](https://huggingface.co/datasets/iamtarun/python_code_instructions_18k_alpaca?row=44)


#### Metrics

<!-- These are the evaluation metrics being used, ideally with a description of why. -->

 - **chrf:** 0.73
 - **codebleu:** 0.67
 - **codebleu_ngram:** 0.53

### Results

```python
import json
import pandas as pd

# Load the JSON data
with open('data.json', 'r') as f:
    data = json.load(f)

# Create the DataFrame
df = pd.DataFrame(data)
```

#### Summary



## Environmental Impact

<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hardware Type:** H100
- **Hours used:** 30 minutes 
- **Cloud Provider:** Google-cloud


## Technical Specifications [optional]

### Model Architecture and Objective

#### Hardware

- **Hardware Type:** H100
- **Hours used:** 30 minutes 
- **Cloud Provider:** Google-cloud

#### Software

- bitsandbytes==0.42.0
- peft==0.8.2
- trl==0.7.10
- accelerate==0.27.1
- datasets==2.17.0
- transformers==4.38.0