File size: 4,012 Bytes
9674dc1 5f953ba 9674dc1 17d5f84 9674dc1 17d5f84 9674dc1 2ffdedb 9674dc1 5f953ba 9674dc1 5f953ba 9674dc1 17294a6 5f953ba 9674dc1 5f953ba 9674dc1 5f953ba 9674dc1 5f953ba 9674dc1 5f953ba 9674dc1 5f953ba 9674dc1 5f953ba 9674dc1 5f953ba 9674dc1 5f953ba 9674dc1 5f953ba 55eb0a7 9674dc1 5f953ba 9674dc1 5f953ba 9674dc1 5f953ba 9674dc1 5f953ba 9674dc1 5f953ba 9674dc1 5f953ba 9674dc1 5f953ba 9674dc1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
---
library_name: transformers
metrics:
- bleu : 0.67
- chrf : 0.73
---
# Model Card for Model ID
This is the Gemma-2b-IT model fine-tuned for the Python code generation task.
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** Mohammed Ashraf
- **Model type:** google/gemma-2b
- **Finetuned from model [optional]:** google/gemma-2b-it
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
Use this model to generate Python code.
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
This model is trained on very basic Python code, so it might not be able to handle complex code.
## How to Get Started with the Model
Use the code below to get started with the model.
```python
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = "mrSoul7766/gemma-2b-it-python-code-gen-adapter"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
text = """<start_of_turn>how to covert json to dataframe.<end_of_turn>
<start_of_turn>model"""
#device = "cuda:0"
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=200)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
**Fine-tuning Data:** [flytech/python-codes-25k](https://huggingface.co/datasets/flytech/python-codes-25k/viewer/default/train?p=2&row=294)
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Training Hyperparameters
- **Training regime:** fp16 <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
- **learning_rate:** 2e-4
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[iamtarun/python_code_instructions_18k_alpaca](https://huggingface.co/datasets/iamtarun/python_code_instructions_18k_alpaca?row=44)
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
- **chrf:** 0.73
- **codebleu:** 0.67
- **codebleu_ngram:** 0.53
### Results
```python
import json
import pandas as pd
# Load the JSON data
with open('data.json', 'r') as f:
data = json.load(f)
# Create the DataFrame
df = pd.DataFrame(data)
```
#### Summary
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** H100
- **Hours used:** 30 minutes
- **Cloud Provider:** Google-cloud
## Technical Specifications [optional]
### Model Architecture and Objective
#### Hardware
- **Hardware Type:** H100
- **Hours used:** 30 minutes
- **Cloud Provider:** Google-cloud
#### Software
- bitsandbytes==0.42.0
- peft==0.8.2
- trl==0.7.10
- accelerate==0.27.1
- datasets==2.17.0
- transformers==4.38.0
|