File size: 1,388 Bytes
8c02470
f5993e4
 
8c02470
 
 
db2fa5c
f5993e4
 
 
8c02470
 
 
 
 
 
 
 
 
 
8fa9ece
 
8c02470
c16a918
 
8c02470
 
8fa9ece
 
313fa49
8fa9ece
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c02470
 
 
 
 
 
8859e1f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
---
language:
- en
license: mit
tags:
- generated_from_trainer
- image-to-text
- image-captioning
base_model: microsoft/git-base
pipeline_tag: image-to-text
model-index:
- name: git-base-instagram-cap
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# git-base-instagram-cap

This model is a fine-tuned version of [microsoft/git-base](https://huggingface.co/microsoft/git-base) on an 
[mrSoul7766/instagram_post_captions](https://huggingface.co/datasets/mrSoul7766/instagram_post_captions).

It achieves the following results on the evaluation set:
- Loss: 0.0093


### Usage

you can leverage the capabilities provided by the Hugging Face Transformers library. Here's a basic example using Python:

```python
# Use a pipeline as a high-level helper
from transformers import pipeline

pipe = pipeline("image-to-text", model="mrSoul7766/git-base-instagram-cap")

# Generate caption
caption = pipe("/content/download (12).png",max_new_tokens =100)

# Print the generated answer
print(caption[0]['generated_text'])
```
```
i love my blonde character in kim kardashian hollywood! i'm playing now who's playing with me?
```

### Framework versions

- Transformers 4.37.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0