mradermacher commited on
Commit
9dbde56
·
verified ·
1 Parent(s): 0905bae

auto-patch README.md

Browse files
Files changed (1) hide show
  1. README.md +85 -0
README.md CHANGED
@@ -1,6 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  <!-- ### quantize_version: 2 -->
2
  <!-- ### output_tensor_quantised: 1 -->
3
  <!-- ### convert_type: hf -->
4
  <!-- ### vocab_type: -->
5
  <!-- ### tags: nicoboss -->
6
  weighted/imatrix quants of https://huggingface.co/Salesforce/xLAM-7b-fc-r
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Salesforce/xLAM-7b-fc-r
3
+ datasets:
4
+ - Salesforce/xlam-function-calling-60k
5
+ extra_gated_button_content: Agree and access repository
6
+ extra_gated_fields:
7
+ Affiliation: text
8
+ Country: country
9
+ First Name: text
10
+ Last Name: text
11
+ extra_gated_heading: Acknowledge to follow corresponding license to access the repository
12
+ language:
13
+ - en
14
+ library_name: transformers
15
+ license: cc-by-nc-4.0
16
+ quantized_by: mradermacher
17
+ tags:
18
+ - function-calling
19
+ - LLM Agent
20
+ - tool-use
21
+ - deepseek
22
+ - pytorch
23
+ ---
24
+ ## About
25
+
26
  <!-- ### quantize_version: 2 -->
27
  <!-- ### output_tensor_quantised: 1 -->
28
  <!-- ### convert_type: hf -->
29
  <!-- ### vocab_type: -->
30
  <!-- ### tags: nicoboss -->
31
  weighted/imatrix quants of https://huggingface.co/Salesforce/xLAM-7b-fc-r
32
+
33
+ <!-- provided-files -->
34
+ static quants are available at https://huggingface.co/mradermacher/xLAM-7b-fc-r-GGUF
35
+ ## Usage
36
+
37
+ If you are unsure how to use GGUF files, refer to one of [TheBloke's
38
+ READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
39
+ more details, including on how to concatenate multi-part files.
40
+
41
+ ## Provided Quants
42
+
43
+ (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
44
+
45
+ | Link | Type | Size/GB | Notes |
46
+ |:-----|:-----|--------:|:------|
47
+ | [GGUF](https://huggingface.co/mradermacher/xLAM-7b-fc-r-i1-GGUF/resolve/main/xLAM-7b-fc-r.i1-IQ1_S.gguf) | i1-IQ1_S | 1.8 | for the desperate |
48
+ | [GGUF](https://huggingface.co/mradermacher/xLAM-7b-fc-r-i1-GGUF/resolve/main/xLAM-7b-fc-r.i1-IQ1_M.gguf) | i1-IQ1_M | 1.9 | mostly desperate |
49
+ | [GGUF](https://huggingface.co/mradermacher/xLAM-7b-fc-r-i1-GGUF/resolve/main/xLAM-7b-fc-r.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.1 | |
50
+ | [GGUF](https://huggingface.co/mradermacher/xLAM-7b-fc-r-i1-GGUF/resolve/main/xLAM-7b-fc-r.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.3 | |
51
+ | [GGUF](https://huggingface.co/mradermacher/xLAM-7b-fc-r-i1-GGUF/resolve/main/xLAM-7b-fc-r.i1-IQ2_S.gguf) | i1-IQ2_S | 2.5 | |
52
+ | [GGUF](https://huggingface.co/mradermacher/xLAM-7b-fc-r-i1-GGUF/resolve/main/xLAM-7b-fc-r.i1-IQ2_M.gguf) | i1-IQ2_M | 2.6 | |
53
+ | [GGUF](https://huggingface.co/mradermacher/xLAM-7b-fc-r-i1-GGUF/resolve/main/xLAM-7b-fc-r.i1-Q2_K.gguf) | i1-Q2_K | 2.8 | IQ3_XXS probably better |
54
+ | [GGUF](https://huggingface.co/mradermacher/xLAM-7b-fc-r-i1-GGUF/resolve/main/xLAM-7b-fc-r.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 2.9 | lower quality |
55
+ | [GGUF](https://huggingface.co/mradermacher/xLAM-7b-fc-r-i1-GGUF/resolve/main/xLAM-7b-fc-r.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.1 | |
56
+ | [GGUF](https://huggingface.co/mradermacher/xLAM-7b-fc-r-i1-GGUF/resolve/main/xLAM-7b-fc-r.i1-IQ3_S.gguf) | i1-IQ3_S | 3.2 | beats Q3_K* |
57
+ | [GGUF](https://huggingface.co/mradermacher/xLAM-7b-fc-r-i1-GGUF/resolve/main/xLAM-7b-fc-r.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.2 | IQ3_XS probably better |
58
+ | [GGUF](https://huggingface.co/mradermacher/xLAM-7b-fc-r-i1-GGUF/resolve/main/xLAM-7b-fc-r.i1-IQ3_M.gguf) | i1-IQ3_M | 3.4 | |
59
+ | [GGUF](https://huggingface.co/mradermacher/xLAM-7b-fc-r-i1-GGUF/resolve/main/xLAM-7b-fc-r.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.6 | IQ3_S probably better |
60
+ | [GGUF](https://huggingface.co/mradermacher/xLAM-7b-fc-r-i1-GGUF/resolve/main/xLAM-7b-fc-r.i1-Q3_K_L.gguf) | i1-Q3_K_L | 3.8 | IQ3_M probably better |
61
+ | [GGUF](https://huggingface.co/mradermacher/xLAM-7b-fc-r-i1-GGUF/resolve/main/xLAM-7b-fc-r.i1-IQ4_XS.gguf) | i1-IQ4_XS | 3.9 | |
62
+ | [GGUF](https://huggingface.co/mradermacher/xLAM-7b-fc-r-i1-GGUF/resolve/main/xLAM-7b-fc-r.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 4.1 | fast on arm, low quality |
63
+ | [GGUF](https://huggingface.co/mradermacher/xLAM-7b-fc-r-i1-GGUF/resolve/main/xLAM-7b-fc-r.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 4.1 | fast on arm+i8mm, low quality |
64
+ | [GGUF](https://huggingface.co/mradermacher/xLAM-7b-fc-r-i1-GGUF/resolve/main/xLAM-7b-fc-r.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 4.1 | fast on arm+sve, low quality |
65
+ | [GGUF](https://huggingface.co/mradermacher/xLAM-7b-fc-r-i1-GGUF/resolve/main/xLAM-7b-fc-r.i1-Q4_0.gguf) | i1-Q4_0 | 4.1 | fast, low quality |
66
+ | [GGUF](https://huggingface.co/mradermacher/xLAM-7b-fc-r-i1-GGUF/resolve/main/xLAM-7b-fc-r.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.1 | optimal size/speed/quality |
67
+ | [GGUF](https://huggingface.co/mradermacher/xLAM-7b-fc-r-i1-GGUF/resolve/main/xLAM-7b-fc-r.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.3 | fast, recommended |
68
+ | [GGUF](https://huggingface.co/mradermacher/xLAM-7b-fc-r-i1-GGUF/resolve/main/xLAM-7b-fc-r.i1-Q5_K_S.gguf) | i1-Q5_K_S | 4.9 | |
69
+ | [GGUF](https://huggingface.co/mradermacher/xLAM-7b-fc-r-i1-GGUF/resolve/main/xLAM-7b-fc-r.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.0 | |
70
+ | [GGUF](https://huggingface.co/mradermacher/xLAM-7b-fc-r-i1-GGUF/resolve/main/xLAM-7b-fc-r.i1-Q6_K.gguf) | i1-Q6_K | 5.8 | practically like static Q6_K |
71
+
72
+ Here is a handy graph by ikawrakow comparing some lower-quality quant
73
+ types (lower is better):
74
+
75
+ ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
76
+
77
+ And here are Artefact2's thoughts on the matter:
78
+ https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
79
+
80
+ ## FAQ / Model Request
81
+
82
+ See https://huggingface.co/mradermacher/model_requests for some answers to
83
+ questions you might have and/or if you want some other model quantized.
84
+
85
+ ## Thanks
86
+
87
+ I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
88
+ me use its servers and providing upgrades to my workstation to enable
89
+ this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
90
+
91
+ <!-- end -->