File size: 7,172 Bytes
9c0a241
 
 
 
 
 
 
 
 
 
51c6f1f
 
17837f6
9c0a241
 
 
 
 
51c6f1f
9c0a241
 
 
 
 
51c6f1f
9c0a241
51c6f1f
44ea3a7
 
 
 
 
 
 
 
 
51c6f1f
44ea3a7
51c6f1f
44ea3a7
51c6f1f
 
44ea3a7
51c6f1f
44ea3a7
51c6f1f
 
44ea3a7
51c6f1f
44ea3a7
51c6f1f
 
44ea3a7
51c6f1f
44ea3a7
51c6f1f
 
44ea3a7
51c6f1f
44ea3a7
51c6f1f
 
44ea3a7
51c6f1f
44ea3a7
51c6f1f
 
44ea3a7
51c6f1f
44ea3a7
51c6f1f
 
44ea3a7
51c6f1f
44ea3a7
51c6f1f
 
44ea3a7
51c6f1f
44ea3a7
51c6f1f
 
44ea3a7
51c6f1f
44ea3a7
51c6f1f
 
44ea3a7
51c6f1f
44ea3a7
51c6f1f
9c0a241
 
 
 
 
964b25b
9c0a241
 
 
 
 
 
 
 
ef4c8e9
 
 
 
 
 
 
9c0a241
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
---
language:
- en
license: mit
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
widget:
- text: She was badly wounded already. Another spear would take her down.
base_model: microsoft/deberta-v3-large
model-index:
- name: deberta-v3-large-mnli-2
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: GLUE MNLI
      type: glue
      args: mnli
    metrics:
    - type: accuracy
      value: 0.8949349064279902
      name: Accuracy
  - task:
      type: natural-language-inference
      name: Natural Language Inference
    dataset:
      name: glue
      type: glue
      config: mnli
      split: validation_matched
    metrics:
    - type: accuracy
      value: 0.9000509424350484
      name: Accuracy
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmU1NTE1YmYwOTA4NmQ3ZWE1MmM0ZDFiNDQ5YWIyMDMyZDhjZWMxYTQ3NGIxOWVkMTQxYTA3MTE2ZTUyYjg0ZiIsInZlcnNpb24iOjF9.UygjleiO4h0rlNa8KJIzJMy2VbMkLF-kB-YowCa_EhLKJQqRr9id5db81MyR_VV3ROrSdHVbCGIM9qxkPRbABg
    - type: precision
      value: 0.9000452542826349
      name: Precision Macro
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiN2EyMWYxY2ZlNTFhYWRhNjA4MzYxOTI4NDAzMjQwMmI4MTJmMWE3ZWEzZTQwMmMyZTM1MzIxYWEyYzVhNDlmMCIsInZlcnNpb24iOjF9.iq2CgF4ik1_DjPlbmFgxvscryy1NNQjTatCJhDu95sXMdlWkekPS6on3NyEaSDwptKyuTQiF4wh8WZDrfhO_Dw
    - type: precision
      value: 0.9000509424350484
      name: Precision Micro
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmY5NmE1MjU1Yzg3Mzk3MDJiNGUyMzM5NmYxYjljZjY1OTQ3NWE0MWM2MTZhYjQ4ZWFmY2FkODc4OThkMzIxMCIsInZlcnNpb24iOjF9.yN_8lq_IjeLU1WJknAkoj75MQajxLvsIsf_pOPFT0_Q77Vfhu0AsIdy1WDJcsAw08ziJoNpN_2LGDMBYJmwzCQ
    - type: precision
      value: 0.9014585350976404
      name: Precision Weighted
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTBkYWM4YTE3N2Q5ZmY5ZTRiMGQ1MDc5ODk2NjQwZDc0ODNkMjk3MjdjMjRlZDU2Yzk1MTliMzhmNjYzYzY2ZCIsInZlcnNpb24iOjF9.f9_fAM_a9LwSBwFgwaO5rdAYzV3wkhHq6yquugL1djRlbISZdpzZFWfJHcS-fvgMayYsklBK_ezbu0f7u7tyDg
    - type: recall
      value: 0.900253092056111
      name: Recall Macro
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTkwZTRmYzhjNDMyMDllNzFiYTNkMDdjN2E2NmEzOTdjMzAxNjdmMzg3OTFmN2IwZTlmYWY5MWQyMDUyNWRlMSIsInZlcnNpb24iOjF9.aWtX33vOHaGpePRZwO9dfTfWoWyXYCVAf8W1AlHXZto6Ve2HX9RLISTsALRMfNzX-7B6LYLh6qzusjf2xQ20Bw
    - type: recall
      value: 0.9000509424350484
      name: Recall Micro
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMGFhYzVlZjQ3M2YyYjY1NTBiMGI4NmI4MTgwY2QzY2I3YmMyNjc3YmFhMDU1ZjNlY2FkMjQxOTg3YWYyYTU3ZiIsInZlcnNpb24iOjF9.wPD0-SL1vdG3_bi7cKh_hgVwVr1yV6zRYBzpGe6bDEzV5BYb5lCQoAebS5U1o2H4E4qi7zr2YNFEToNCRTqPBA
    - type: recall
      value: 0.9000509424350484
      name: Recall Weighted
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNThmNjQ4MDY2ZTM3NjQyODQzMTZkNjgyMGNkNDE5MDMwOWJmMzhjZmZjNzllYjA4NmJiZDU3MzU3ODE0YjFhMyIsInZlcnNpb24iOjF9.yN9hb5VWX5ICIXdPBc0OD0BFHnzWv8rmmD--OEh6h1agGiRiyCdROo4saN5CQKiVlPBsHPliaoXra45Xi4gVAg
    - type: f1
      value: 0.8997940135019421
      name: F1 Macro
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmQzMWZhZTg1ODBmNWFiMGJiZDE5ODA2ZTA3NmUwZDcxMTQ1NzZjNDFiZDZkN2RmMmQ3YzRiMmI2Y2Q3MWRlNiIsInZlcnNpb24iOjF9.lr6jUSxXu6zKs_x-UQT7dL9_PzKTf50KUu7spTzRI6_SkaUyl9Ez0gR-O8bfzypaqkdxvtf7dsNFskpUvJ8wDQ
    - type: f1
      value: 0.9000509424350484
      name: F1 Micro
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMWFiZjAzYjQ4NjFjMThjM2RlOGU1YzRjMmQzZTNhMDVjYWE3Njg5Y2QwMzc4YzY0ODNjOWUwMDJiNGU4ODk2MyIsInZlcnNpb24iOjF9.BsWoM2Mb4Kx5Lzm7b9GstHNuxGX7emrFNRcepgYNhjkeEhj3yJbvbboOaJuWMc9TdJEPr3o1PuNiu7zQ_vy_DQ
    - type: f1
      value: 0.9003949466748086
      name: F1 Weighted
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNWQ1NjA2Njc0Njk2YzY0MzIwYTYwMWM5MTZhNzhhZDY2ODgyYzVlODlmN2Q2MjRjNzhhNzMyZDQ1ZmYwMjdlMyIsInZlcnNpb24iOjF9.Xdl4G3GaOXzCRhaoDf_sJThoEQLmlGyf4efJCYFKXCe1DfNb4qOl-_h9LuE3-iacvusjIJFIquhQ7YsLtqbrCg
    - type: loss
      value: 0.6493226289749146
      name: loss
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZWU0ZGM5MWE2Mjk3NDI5ZGNkZmFhM2IxYmFiZjVkMjdiNTE4NzA5YWMxNDcxOWYxYjA2MmQ3ZmE1Yzk5M2E2OCIsInZlcnNpb24iOjF9.gsO8l1_9H89OaztnG6rhNuOY-ssmafoUSwuyNRPR5TjqwrimWk4S6k2uCSSoV9h_JvtliFQ94aZhgSB2lGxWCg
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# DeBERTa-v3-large fine-tuned on MNLI

This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the GLUE MNLI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6763
- Accuracy: 0.8949

## Model description

[DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. With those two improvements, DeBERTa out perform RoBERTa on a majority of NLU tasks with 80GB training data. 

In [DeBERTa V3](https://arxiv.org/abs/2111.09543), we further improved the efficiency of DeBERTa using ELECTRA-Style pre-training with Gradient Disentangled Embedding Sharing. Compared to DeBERTa,  our V3 version significantly improves the model performance on downstream tasks.  You can find more technique details about the new model from our [paper](https://arxiv.org/abs/2111.09543).

Please check the [official repository](https://github.com/microsoft/DeBERTa) for more implementation details and updates.

The DeBERTa V3 large model comes with 24 layers and a hidden size of 1024. It has 304M backbone parameters  with a vocabulary containing 128K tokens which introduces 131M parameters in the Embedding layer.  This model was trained using the 160GB data as DeBERTa V2.

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step   | Validation Loss | Accuracy |
|:-------------:|:-----:|:------:|:---------------:|:--------:|
| 0.3676        | 1.0   | 24544  | 0.3761          | 0.8681   |
| 0.2782        | 2.0   | 49088  | 0.3605          | 0.8881   |
| 0.1986        | 3.0   | 73632  | 0.4672          | 0.8894   |
| 0.1299        | 4.0   | 98176  | 0.5248          | 0.8967   |
| 0.0643        | 5.0   | 122720 | 0.6489          | 0.8999   |


### Framework versions

- Transformers 4.13.0.dev0
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3