File size: 7,172 Bytes
9c0a241 51c6f1f 17837f6 9c0a241 51c6f1f 9c0a241 51c6f1f 9c0a241 51c6f1f 44ea3a7 51c6f1f 44ea3a7 51c6f1f 44ea3a7 51c6f1f 44ea3a7 51c6f1f 44ea3a7 51c6f1f 44ea3a7 51c6f1f 44ea3a7 51c6f1f 44ea3a7 51c6f1f 44ea3a7 51c6f1f 44ea3a7 51c6f1f 44ea3a7 51c6f1f 44ea3a7 51c6f1f 44ea3a7 51c6f1f 44ea3a7 51c6f1f 44ea3a7 51c6f1f 44ea3a7 51c6f1f 44ea3a7 51c6f1f 44ea3a7 51c6f1f 44ea3a7 51c6f1f 44ea3a7 51c6f1f 44ea3a7 51c6f1f 44ea3a7 51c6f1f 44ea3a7 51c6f1f 9c0a241 964b25b 9c0a241 ef4c8e9 9c0a241 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
---
language:
- en
license: mit
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
widget:
- text: She was badly wounded already. Another spear would take her down.
base_model: microsoft/deberta-v3-large
model-index:
- name: deberta-v3-large-mnli-2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: GLUE MNLI
type: glue
args: mnli
metrics:
- type: accuracy
value: 0.8949349064279902
name: Accuracy
- task:
type: natural-language-inference
name: Natural Language Inference
dataset:
name: glue
type: glue
config: mnli
split: validation_matched
metrics:
- type: accuracy
value: 0.9000509424350484
name: Accuracy
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmU1NTE1YmYwOTA4NmQ3ZWE1MmM0ZDFiNDQ5YWIyMDMyZDhjZWMxYTQ3NGIxOWVkMTQxYTA3MTE2ZTUyYjg0ZiIsInZlcnNpb24iOjF9.UygjleiO4h0rlNa8KJIzJMy2VbMkLF-kB-YowCa_EhLKJQqRr9id5db81MyR_VV3ROrSdHVbCGIM9qxkPRbABg
- type: precision
value: 0.9000452542826349
name: Precision Macro
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiN2EyMWYxY2ZlNTFhYWRhNjA4MzYxOTI4NDAzMjQwMmI4MTJmMWE3ZWEzZTQwMmMyZTM1MzIxYWEyYzVhNDlmMCIsInZlcnNpb24iOjF9.iq2CgF4ik1_DjPlbmFgxvscryy1NNQjTatCJhDu95sXMdlWkekPS6on3NyEaSDwptKyuTQiF4wh8WZDrfhO_Dw
- type: precision
value: 0.9000509424350484
name: Precision Micro
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmY5NmE1MjU1Yzg3Mzk3MDJiNGUyMzM5NmYxYjljZjY1OTQ3NWE0MWM2MTZhYjQ4ZWFmY2FkODc4OThkMzIxMCIsInZlcnNpb24iOjF9.yN_8lq_IjeLU1WJknAkoj75MQajxLvsIsf_pOPFT0_Q77Vfhu0AsIdy1WDJcsAw08ziJoNpN_2LGDMBYJmwzCQ
- type: precision
value: 0.9014585350976404
name: Precision Weighted
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTBkYWM4YTE3N2Q5ZmY5ZTRiMGQ1MDc5ODk2NjQwZDc0ODNkMjk3MjdjMjRlZDU2Yzk1MTliMzhmNjYzYzY2ZCIsInZlcnNpb24iOjF9.f9_fAM_a9LwSBwFgwaO5rdAYzV3wkhHq6yquugL1djRlbISZdpzZFWfJHcS-fvgMayYsklBK_ezbu0f7u7tyDg
- type: recall
value: 0.900253092056111
name: Recall Macro
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTkwZTRmYzhjNDMyMDllNzFiYTNkMDdjN2E2NmEzOTdjMzAxNjdmMzg3OTFmN2IwZTlmYWY5MWQyMDUyNWRlMSIsInZlcnNpb24iOjF9.aWtX33vOHaGpePRZwO9dfTfWoWyXYCVAf8W1AlHXZto6Ve2HX9RLISTsALRMfNzX-7B6LYLh6qzusjf2xQ20Bw
- type: recall
value: 0.9000509424350484
name: Recall Micro
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMGFhYzVlZjQ3M2YyYjY1NTBiMGI4NmI4MTgwY2QzY2I3YmMyNjc3YmFhMDU1ZjNlY2FkMjQxOTg3YWYyYTU3ZiIsInZlcnNpb24iOjF9.wPD0-SL1vdG3_bi7cKh_hgVwVr1yV6zRYBzpGe6bDEzV5BYb5lCQoAebS5U1o2H4E4qi7zr2YNFEToNCRTqPBA
- type: recall
value: 0.9000509424350484
name: Recall Weighted
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNThmNjQ4MDY2ZTM3NjQyODQzMTZkNjgyMGNkNDE5MDMwOWJmMzhjZmZjNzllYjA4NmJiZDU3MzU3ODE0YjFhMyIsInZlcnNpb24iOjF9.yN9hb5VWX5ICIXdPBc0OD0BFHnzWv8rmmD--OEh6h1agGiRiyCdROo4saN5CQKiVlPBsHPliaoXra45Xi4gVAg
- type: f1
value: 0.8997940135019421
name: F1 Macro
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmQzMWZhZTg1ODBmNWFiMGJiZDE5ODA2ZTA3NmUwZDcxMTQ1NzZjNDFiZDZkN2RmMmQ3YzRiMmI2Y2Q3MWRlNiIsInZlcnNpb24iOjF9.lr6jUSxXu6zKs_x-UQT7dL9_PzKTf50KUu7spTzRI6_SkaUyl9Ez0gR-O8bfzypaqkdxvtf7dsNFskpUvJ8wDQ
- type: f1
value: 0.9000509424350484
name: F1 Micro
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMWFiZjAzYjQ4NjFjMThjM2RlOGU1YzRjMmQzZTNhMDVjYWE3Njg5Y2QwMzc4YzY0ODNjOWUwMDJiNGU4ODk2MyIsInZlcnNpb24iOjF9.BsWoM2Mb4Kx5Lzm7b9GstHNuxGX7emrFNRcepgYNhjkeEhj3yJbvbboOaJuWMc9TdJEPr3o1PuNiu7zQ_vy_DQ
- type: f1
value: 0.9003949466748086
name: F1 Weighted
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNWQ1NjA2Njc0Njk2YzY0MzIwYTYwMWM5MTZhNzhhZDY2ODgyYzVlODlmN2Q2MjRjNzhhNzMyZDQ1ZmYwMjdlMyIsInZlcnNpb24iOjF9.Xdl4G3GaOXzCRhaoDf_sJThoEQLmlGyf4efJCYFKXCe1DfNb4qOl-_h9LuE3-iacvusjIJFIquhQ7YsLtqbrCg
- type: loss
value: 0.6493226289749146
name: loss
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZWU0ZGM5MWE2Mjk3NDI5ZGNkZmFhM2IxYmFiZjVkMjdiNTE4NzA5YWMxNDcxOWYxYjA2MmQ3ZmE1Yzk5M2E2OCIsInZlcnNpb24iOjF9.gsO8l1_9H89OaztnG6rhNuOY-ssmafoUSwuyNRPR5TjqwrimWk4S6k2uCSSoV9h_JvtliFQ94aZhgSB2lGxWCg
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# DeBERTa-v3-large fine-tuned on MNLI
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the GLUE MNLI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6763
- Accuracy: 0.8949
## Model description
[DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. With those two improvements, DeBERTa out perform RoBERTa on a majority of NLU tasks with 80GB training data.
In [DeBERTa V3](https://arxiv.org/abs/2111.09543), we further improved the efficiency of DeBERTa using ELECTRA-Style pre-training with Gradient Disentangled Embedding Sharing. Compared to DeBERTa, our V3 version significantly improves the model performance on downstream tasks. You can find more technique details about the new model from our [paper](https://arxiv.org/abs/2111.09543).
Please check the [official repository](https://github.com/microsoft/DeBERTa) for more implementation details and updates.
The DeBERTa V3 large model comes with 24 layers and a hidden size of 1024. It has 304M backbone parameters with a vocabulary containing 128K tokens which introduces 131M parameters in the Embedding layer. This model was trained using the 160GB data as DeBERTa V2.
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:------:|:---------------:|:--------:|
| 0.3676 | 1.0 | 24544 | 0.3761 | 0.8681 |
| 0.2782 | 2.0 | 49088 | 0.3605 | 0.8881 |
| 0.1986 | 3.0 | 73632 | 0.4672 | 0.8894 |
| 0.1299 | 4.0 | 98176 | 0.5248 | 0.8967 |
| 0.0643 | 5.0 | 122720 | 0.6489 | 0.8999 |
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|