mrm8488 commited on
Commit
a900b52
·
verified ·
1 Parent(s): 13e0c0e

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,1103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ library_name: sentence-transformers
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - dataset_size:1K<n<10K
10
+ - loss:MatryoshkaLoss
11
+ - loss:CoSENTLoss
12
+ base_model: distilbert/distilbert-base-uncased
13
+ metrics:
14
+ - pearson_cosine
15
+ - spearman_cosine
16
+ - pearson_manhattan
17
+ - spearman_manhattan
18
+ - pearson_euclidean
19
+ - spearman_euclidean
20
+ - pearson_dot
21
+ - spearman_dot
22
+ - pearson_max
23
+ - spearman_max
24
+ widget:
25
+ - source_sentence: A woman is dancing.
26
+ sentences:
27
+ - Women are dancing.
28
+ - A toddler walks down a hallway.
29
+ - Shinzo Abe is Japan's prime minister
30
+ - source_sentence: A man is spitting.
31
+ sentences:
32
+ - A man is crying.
33
+ - The girl is playing the guitar.
34
+ - A slow loris hanging on a cord.
35
+ - source_sentence: A man is speaking.
36
+ sentences:
37
+ - A man is talking.
38
+ - A man plays an acoustic guitar.
39
+ - The dogs are chasing a cat.
40
+ - source_sentence: A plane in the sky.
41
+ sentences:
42
+ - Two airplanes in the sky.
43
+ - A slow loris hanging on a cord.
44
+ - Turkey's PM Warns Against Protests
45
+ - source_sentence: A baby is laughing.
46
+ sentences:
47
+ - The baby laughed in his car seat.
48
+ - A brown horse in a green field.
49
+ - Bangladesh Islamist leader executed
50
+ pipeline_tag: sentence-similarity
51
+ model-index:
52
+ - name: SentenceTransformer based on distilbert/distilbert-base-uncased
53
+ results:
54
+ - task:
55
+ type: semantic-similarity
56
+ name: Semantic Similarity
57
+ dataset:
58
+ name: sts dev 768
59
+ type: sts-dev-768
60
+ metrics:
61
+ - type: pearson_cosine
62
+ value: 0.8597256789475689
63
+ name: Pearson Cosine
64
+ - type: spearman_cosine
65
+ value: 0.8704890959686488
66
+ name: Spearman Cosine
67
+ - type: pearson_manhattan
68
+ value: 0.8577087236028236
69
+ name: Pearson Manhattan
70
+ - type: spearman_manhattan
71
+ value: 0.8613364457717408
72
+ name: Spearman Manhattan
73
+ - type: pearson_euclidean
74
+ value: 0.8573646665610765
75
+ name: Pearson Euclidean
76
+ - type: spearman_euclidean
77
+ value: 0.8611053939518858
78
+ name: Spearman Euclidean
79
+ - type: pearson_dot
80
+ value: 0.7230928823966007
81
+ name: Pearson Dot
82
+ - type: spearman_dot
83
+ value: 0.7292814320710974
84
+ name: Spearman Dot
85
+ - type: pearson_max
86
+ value: 0.8597256789475689
87
+ name: Pearson Max
88
+ - type: spearman_max
89
+ value: 0.8704890959686488
90
+ name: Spearman Max
91
+ - task:
92
+ type: semantic-similarity
93
+ name: Semantic Similarity
94
+ dataset:
95
+ name: sts dev 512
96
+ type: sts-dev-512
97
+ metrics:
98
+ - type: pearson_cosine
99
+ value: 0.8565849984058084
100
+ name: Pearson Cosine
101
+ - type: spearman_cosine
102
+ value: 0.8690380994355429
103
+ name: Spearman Cosine
104
+ - type: pearson_manhattan
105
+ value: 0.8560989283234569
106
+ name: Pearson Manhattan
107
+ - type: spearman_manhattan
108
+ value: 0.8602048185493963
109
+ name: Spearman Manhattan
110
+ - type: pearson_euclidean
111
+ value: 0.8560319360006069
112
+ name: Pearson Euclidean
113
+ - type: spearman_euclidean
114
+ value: 0.8598344132114529
115
+ name: Spearman Euclidean
116
+ - type: pearson_dot
117
+ value: 0.7250593470322173
118
+ name: Pearson Dot
119
+ - type: spearman_dot
120
+ value: 0.7324935808414036
121
+ name: Spearman Dot
122
+ - type: pearson_max
123
+ value: 0.8565849984058084
124
+ name: Pearson Max
125
+ - type: spearman_max
126
+ value: 0.8690380994355429
127
+ name: Spearman Max
128
+ - task:
129
+ type: semantic-similarity
130
+ name: Semantic Similarity
131
+ dataset:
132
+ name: sts dev 256
133
+ type: sts-dev-256
134
+ metrics:
135
+ - type: pearson_cosine
136
+ value: 0.8508677416837496
137
+ name: Pearson Cosine
138
+ - type: spearman_cosine
139
+ value: 0.8655671620679589
140
+ name: Spearman Cosine
141
+ - type: pearson_manhattan
142
+ value: 0.8516296649395021
143
+ name: Pearson Manhattan
144
+ - type: spearman_manhattan
145
+ value: 0.8576372447474295
146
+ name: Spearman Manhattan
147
+ - type: pearson_euclidean
148
+ value: 0.8512958746883122
149
+ name: Pearson Euclidean
150
+ - type: spearman_euclidean
151
+ value: 0.8567348597207523
152
+ name: Spearman Euclidean
153
+ - type: pearson_dot
154
+ value: 0.691266333570308
155
+ name: Pearson Dot
156
+ - type: spearman_dot
157
+ value: 0.6983564197469347
158
+ name: Spearman Dot
159
+ - type: pearson_max
160
+ value: 0.8516296649395021
161
+ name: Pearson Max
162
+ - type: spearman_max
163
+ value: 0.8655671620679589
164
+ name: Spearman Max
165
+ - task:
166
+ type: semantic-similarity
167
+ name: Semantic Similarity
168
+ dataset:
169
+ name: sts dev 128
170
+ type: sts-dev-128
171
+ metrics:
172
+ - type: pearson_cosine
173
+ value: 0.8416379040782492
174
+ name: Pearson Cosine
175
+ - type: spearman_cosine
176
+ value: 0.8625866345174488
177
+ name: Spearman Cosine
178
+ - type: pearson_manhattan
179
+ value: 0.8410105415496507
180
+ name: Pearson Manhattan
181
+ - type: spearman_manhattan
182
+ value: 0.8496221523132089
183
+ name: Spearman Manhattan
184
+ - type: pearson_euclidean
185
+ value: 0.8431760561066126
186
+ name: Pearson Euclidean
187
+ - type: spearman_euclidean
188
+ value: 0.8505697779445824
189
+ name: Spearman Euclidean
190
+ - type: pearson_dot
191
+ value: 0.677560950193549
192
+ name: Pearson Dot
193
+ - type: spearman_dot
194
+ value: 0.6864851260895027
195
+ name: Spearman Dot
196
+ - type: pearson_max
197
+ value: 0.8431760561066126
198
+ name: Pearson Max
199
+ - type: spearman_max
200
+ value: 0.8625866345174488
201
+ name: Spearman Max
202
+ - task:
203
+ type: semantic-similarity
204
+ name: Semantic Similarity
205
+ dataset:
206
+ name: sts dev 64
207
+ type: sts-dev-64
208
+ metrics:
209
+ - type: pearson_cosine
210
+ value: 0.823170809036498
211
+ name: Pearson Cosine
212
+ - type: spearman_cosine
213
+ value: 0.8523184158399918
214
+ name: Spearman Cosine
215
+ - type: pearson_manhattan
216
+ value: 0.8255414664543136
217
+ name: Pearson Manhattan
218
+ - type: spearman_manhattan
219
+ value: 0.8358413125165197
220
+ name: Spearman Manhattan
221
+ - type: pearson_euclidean
222
+ value: 0.8292011526410756
223
+ name: Pearson Euclidean
224
+ - type: spearman_euclidean
225
+ value: 0.8385242101250404
226
+ name: Spearman Euclidean
227
+ - type: pearson_dot
228
+ value: 0.641639319620455
229
+ name: Pearson Dot
230
+ - type: spearman_dot
231
+ value: 0.6564088055361835
232
+ name: Spearman Dot
233
+ - type: pearson_max
234
+ value: 0.8292011526410756
235
+ name: Pearson Max
236
+ - type: spearman_max
237
+ value: 0.8523184158399918
238
+ name: Spearman Max
239
+ - task:
240
+ type: semantic-similarity
241
+ name: Semantic Similarity
242
+ dataset:
243
+ name: sts dev 32
244
+ type: sts-dev-32
245
+ metrics:
246
+ - type: pearson_cosine
247
+ value: 0.7903418859430655
248
+ name: Pearson Cosine
249
+ - type: spearman_cosine
250
+ value: 0.8327625705936669
251
+ name: Spearman Cosine
252
+ - type: pearson_manhattan
253
+ value: 0.8031537655331857
254
+ name: Pearson Manhattan
255
+ - type: spearman_manhattan
256
+ value: 0.8168069966906343
257
+ name: Spearman Manhattan
258
+ - type: pearson_euclidean
259
+ value: 0.8078549989079483
260
+ name: Pearson Euclidean
261
+ - type: spearman_euclidean
262
+ value: 0.8195679102426064
263
+ name: Spearman Euclidean
264
+ - type: pearson_dot
265
+ value: 0.5951512690504269
266
+ name: Pearson Dot
267
+ - type: spearman_dot
268
+ value: 0.5992430550243973
269
+ name: Spearman Dot
270
+ - type: pearson_max
271
+ value: 0.8078549989079483
272
+ name: Pearson Max
273
+ - type: spearman_max
274
+ value: 0.8327625705936669
275
+ name: Spearman Max
276
+ - task:
277
+ type: semantic-similarity
278
+ name: Semantic Similarity
279
+ dataset:
280
+ name: sts test 768
281
+ type: sts-test-768
282
+ metrics:
283
+ - type: pearson_cosine
284
+ value: 0.8259116102299048
285
+ name: Pearson Cosine
286
+ - type: spearman_cosine
287
+ value: 0.8420103291660583
288
+ name: Spearman Cosine
289
+ - type: pearson_manhattan
290
+ value: 0.8417036739734224
291
+ name: Pearson Manhattan
292
+ - type: spearman_manhattan
293
+ value: 0.839403978426242
294
+ name: Spearman Manhattan
295
+ - type: pearson_euclidean
296
+ value: 0.8416944892693242
297
+ name: Pearson Euclidean
298
+ - type: spearman_euclidean
299
+ value: 0.8392814362849023
300
+ name: Spearman Euclidean
301
+ - type: pearson_dot
302
+ value: 0.6531059298507882
303
+ name: Pearson Dot
304
+ - type: spearman_dot
305
+ value: 0.6395643411764597
306
+ name: Spearman Dot
307
+ - type: pearson_max
308
+ value: 0.8417036739734224
309
+ name: Pearson Max
310
+ - type: spearman_max
311
+ value: 0.8420103291660583
312
+ name: Spearman Max
313
+ - task:
314
+ type: semantic-similarity
315
+ name: Semantic Similarity
316
+ dataset:
317
+ name: sts test 512
318
+ type: sts-test-512
319
+ metrics:
320
+ - type: pearson_cosine
321
+ value: 0.8243325623482549
322
+ name: Pearson Cosine
323
+ - type: spearman_cosine
324
+ value: 0.8417788357334501
325
+ name: Spearman Cosine
326
+ - type: pearson_manhattan
327
+ value: 0.8405895269265039
328
+ name: Pearson Manhattan
329
+ - type: spearman_manhattan
330
+ value: 0.8387513037939833
331
+ name: Spearman Manhattan
332
+ - type: pearson_euclidean
333
+ value: 0.8405749756794761
334
+ name: Pearson Euclidean
335
+ - type: spearman_euclidean
336
+ value: 0.8386191956000736
337
+ name: Spearman Euclidean
338
+ - type: pearson_dot
339
+ value: 0.6577547074460394
340
+ name: Pearson Dot
341
+ - type: spearman_dot
342
+ value: 0.6453398362527448
343
+ name: Spearman Dot
344
+ - type: pearson_max
345
+ value: 0.8405895269265039
346
+ name: Pearson Max
347
+ - type: spearman_max
348
+ value: 0.8417788357334501
349
+ name: Spearman Max
350
+ - task:
351
+ type: semantic-similarity
352
+ name: Semantic Similarity
353
+ dataset:
354
+ name: sts test 256
355
+ type: sts-test-256
356
+ metrics:
357
+ - type: pearson_cosine
358
+ value: 0.8128490933340125
359
+ name: Pearson Cosine
360
+ - type: spearman_cosine
361
+ value: 0.8343525276981816
362
+ name: Spearman Cosine
363
+ - type: pearson_manhattan
364
+ value: 0.8349925426973063
365
+ name: Pearson Manhattan
366
+ - type: spearman_manhattan
367
+ value: 0.8339373046648948
368
+ name: Spearman Manhattan
369
+ - type: pearson_euclidean
370
+ value: 0.8349685334828352
371
+ name: Pearson Euclidean
372
+ - type: spearman_euclidean
373
+ value: 0.8342389147888624
374
+ name: Spearman Euclidean
375
+ - type: pearson_dot
376
+ value: 0.6010530472572276
377
+ name: Pearson Dot
378
+ - type: spearman_dot
379
+ value: 0.5827176472260001
380
+ name: Spearman Dot
381
+ - type: pearson_max
382
+ value: 0.8349925426973063
383
+ name: Pearson Max
384
+ - type: spearman_max
385
+ value: 0.8343525276981816
386
+ name: Spearman Max
387
+ - task:
388
+ type: semantic-similarity
389
+ name: Semantic Similarity
390
+ dataset:
391
+ name: sts test 128
392
+ type: sts-test-128
393
+ metrics:
394
+ - type: pearson_cosine
395
+ value: 0.8037074044935162
396
+ name: Pearson Cosine
397
+ - type: spearman_cosine
398
+ value: 0.8297484250803338
399
+ name: Spearman Cosine
400
+ - type: pearson_manhattan
401
+ value: 0.8282523311738189
402
+ name: Pearson Manhattan
403
+ - type: spearman_manhattan
404
+ value: 0.8292579770469635
405
+ name: Spearman Manhattan
406
+ - type: pearson_euclidean
407
+ value: 0.828555014804415
408
+ name: Pearson Euclidean
409
+ - type: spearman_euclidean
410
+ value: 0.8294547431431344
411
+ name: Spearman Euclidean
412
+ - type: pearson_dot
413
+ value: 0.579341375708575
414
+ name: Pearson Dot
415
+ - type: spearman_dot
416
+ value: 0.5659659830073487
417
+ name: Spearman Dot
418
+ - type: pearson_max
419
+ value: 0.828555014804415
420
+ name: Pearson Max
421
+ - type: spearman_max
422
+ value: 0.8297484250803338
423
+ name: Spearman Max
424
+ - task:
425
+ type: semantic-similarity
426
+ name: Semantic Similarity
427
+ dataset:
428
+ name: sts test 64
429
+ type: sts-test-64
430
+ metrics:
431
+ - type: pearson_cosine
432
+ value: 0.7861572380387101
433
+ name: Pearson Cosine
434
+ - type: spearman_cosine
435
+ value: 0.8221344542757412
436
+ name: Spearman Cosine
437
+ - type: pearson_manhattan
438
+ value: 0.8179044736790866
439
+ name: Pearson Manhattan
440
+ - type: spearman_manhattan
441
+ value: 0.8218843830925717
442
+ name: Spearman Manhattan
443
+ - type: pearson_euclidean
444
+ value: 0.8199399298670013
445
+ name: Pearson Euclidean
446
+ - type: spearman_euclidean
447
+ value: 0.8240682904452457
448
+ name: Spearman Euclidean
449
+ - type: pearson_dot
450
+ value: 0.5115276911122266
451
+ name: Pearson Dot
452
+ - type: spearman_dot
453
+ value: 0.5024074247877125
454
+ name: Spearman Dot
455
+ - type: pearson_max
456
+ value: 0.8199399298670013
457
+ name: Pearson Max
458
+ - type: spearman_max
459
+ value: 0.8240682904452457
460
+ name: Spearman Max
461
+ - task:
462
+ type: semantic-similarity
463
+ name: Semantic Similarity
464
+ dataset:
465
+ name: sts test 32
466
+ type: sts-test-32
467
+ metrics:
468
+ - type: pearson_cosine
469
+ value: 0.7616404560065974
470
+ name: Pearson Cosine
471
+ - type: spearman_cosine
472
+ value: 0.8126281001961144
473
+ name: Spearman Cosine
474
+ - type: pearson_manhattan
475
+ value: 0.7995560120404742
476
+ name: Pearson Manhattan
477
+ - type: spearman_manhattan
478
+ value: 0.8084393007868024
479
+ name: Spearman Manhattan
480
+ - type: pearson_euclidean
481
+ value: 0.8024415842761214
482
+ name: Pearson Euclidean
483
+ - type: spearman_euclidean
484
+ value: 0.8115677983458126
485
+ name: Spearman Euclidean
486
+ - type: pearson_dot
487
+ value: 0.4646775610104062
488
+ name: Pearson Dot
489
+ - type: spearman_dot
490
+ value: 0.451018702626726
491
+ name: Spearman Dot
492
+ - type: pearson_max
493
+ value: 0.8024415842761214
494
+ name: Pearson Max
495
+ - type: spearman_max
496
+ value: 0.8126281001961144
497
+ name: Spearman Max
498
+ ---
499
+
500
+ # SentenceTransformer based on distilbert/distilbert-base-uncased
501
+
502
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
503
+
504
+ ## Model Details
505
+
506
+ ### Model Description
507
+ - **Model Type:** Sentence Transformer
508
+ - **Base model:** [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) <!-- at revision 12040accade4e8a0f71eabdb258fecc2e7e948be -->
509
+ - **Maximum Sequence Length:** 512 tokens
510
+ - **Output Dimensionality:** 768 tokens
511
+ - **Similarity Function:** Cosine Similarity
512
+ - **Training Dataset:**
513
+ - [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb)
514
+ - **Language:** en
515
+ <!-- - **License:** Unknown -->
516
+
517
+ ### Model Sources
518
+
519
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
520
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
521
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
522
+
523
+ ### Full Model Architecture
524
+
525
+ ```
526
+ SentenceTransformer(
527
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
528
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
529
+ )
530
+ ```
531
+
532
+ ## Usage
533
+
534
+ ### Direct Usage (Sentence Transformers)
535
+
536
+ First install the Sentence Transformers library:
537
+
538
+ ```bash
539
+ pip install -U sentence-transformers
540
+ ```
541
+
542
+ Then you can load this model and run inference.
543
+ ```python
544
+ from sentence_transformers import SentenceTransformer
545
+
546
+ # Download from the 🤗 Hub
547
+ model = SentenceTransformer("mrm8488/distilbert-base-matryoshka-sts")
548
+ # Run inference
549
+ sentences = [
550
+ 'A baby is laughing.',
551
+ 'The baby laughed in his car seat.',
552
+ 'A brown horse in a green field.',
553
+ ]
554
+ embeddings = model.encode(sentences)
555
+ print(embeddings.shape)
556
+ # [3, 768]
557
+
558
+ # Get the similarity scores for the embeddings
559
+ similarities = model.similarity(embeddings, embeddings)
560
+ print(similarities.shape)
561
+ # [3, 3]
562
+ ```
563
+
564
+ <!--
565
+ ### Direct Usage (Transformers)
566
+
567
+ <details><summary>Click to see the direct usage in Transformers</summary>
568
+
569
+ </details>
570
+ -->
571
+
572
+ <!--
573
+ ### Downstream Usage (Sentence Transformers)
574
+
575
+ You can finetune this model on your own dataset.
576
+
577
+ <details><summary>Click to expand</summary>
578
+
579
+ </details>
580
+ -->
581
+
582
+ <!--
583
+ ### Out-of-Scope Use
584
+
585
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
586
+ -->
587
+
588
+ ## Evaluation
589
+
590
+ ### Metrics
591
+
592
+ #### Semantic Similarity
593
+ * Dataset: `sts-dev-768`
594
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
595
+
596
+ | Metric | Value |
597
+ |:--------------------|:-----------|
598
+ | pearson_cosine | 0.8597 |
599
+ | **spearman_cosine** | **0.8705** |
600
+ | pearson_manhattan | 0.8577 |
601
+ | spearman_manhattan | 0.8613 |
602
+ | pearson_euclidean | 0.8574 |
603
+ | spearman_euclidean | 0.8611 |
604
+ | pearson_dot | 0.7231 |
605
+ | spearman_dot | 0.7293 |
606
+ | pearson_max | 0.8597 |
607
+ | spearman_max | 0.8705 |
608
+
609
+ #### Semantic Similarity
610
+ * Dataset: `sts-dev-512`
611
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
612
+
613
+ | Metric | Value |
614
+ |:--------------------|:----------|
615
+ | pearson_cosine | 0.8566 |
616
+ | **spearman_cosine** | **0.869** |
617
+ | pearson_manhattan | 0.8561 |
618
+ | spearman_manhattan | 0.8602 |
619
+ | pearson_euclidean | 0.856 |
620
+ | spearman_euclidean | 0.8598 |
621
+ | pearson_dot | 0.7251 |
622
+ | spearman_dot | 0.7325 |
623
+ | pearson_max | 0.8566 |
624
+ | spearman_max | 0.869 |
625
+
626
+ #### Semantic Similarity
627
+ * Dataset: `sts-dev-256`
628
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
629
+
630
+ | Metric | Value |
631
+ |:--------------------|:-----------|
632
+ | pearson_cosine | 0.8509 |
633
+ | **spearman_cosine** | **0.8656** |
634
+ | pearson_manhattan | 0.8516 |
635
+ | spearman_manhattan | 0.8576 |
636
+ | pearson_euclidean | 0.8513 |
637
+ | spearman_euclidean | 0.8567 |
638
+ | pearson_dot | 0.6913 |
639
+ | spearman_dot | 0.6984 |
640
+ | pearson_max | 0.8516 |
641
+ | spearman_max | 0.8656 |
642
+
643
+ #### Semantic Similarity
644
+ * Dataset: `sts-dev-128`
645
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
646
+
647
+ | Metric | Value |
648
+ |:--------------------|:-----------|
649
+ | pearson_cosine | 0.8416 |
650
+ | **spearman_cosine** | **0.8626** |
651
+ | pearson_manhattan | 0.841 |
652
+ | spearman_manhattan | 0.8496 |
653
+ | pearson_euclidean | 0.8432 |
654
+ | spearman_euclidean | 0.8506 |
655
+ | pearson_dot | 0.6776 |
656
+ | spearman_dot | 0.6865 |
657
+ | pearson_max | 0.8432 |
658
+ | spearman_max | 0.8626 |
659
+
660
+ #### Semantic Similarity
661
+ * Dataset: `sts-dev-64`
662
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
663
+
664
+ | Metric | Value |
665
+ |:--------------------|:-----------|
666
+ | pearson_cosine | 0.8232 |
667
+ | **spearman_cosine** | **0.8523** |
668
+ | pearson_manhattan | 0.8255 |
669
+ | spearman_manhattan | 0.8358 |
670
+ | pearson_euclidean | 0.8292 |
671
+ | spearman_euclidean | 0.8385 |
672
+ | pearson_dot | 0.6416 |
673
+ | spearman_dot | 0.6564 |
674
+ | pearson_max | 0.8292 |
675
+ | spearman_max | 0.8523 |
676
+
677
+ #### Semantic Similarity
678
+ * Dataset: `sts-dev-32`
679
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
680
+
681
+ | Metric | Value |
682
+ |:--------------------|:-----------|
683
+ | pearson_cosine | 0.7903 |
684
+ | **spearman_cosine** | **0.8328** |
685
+ | pearson_manhattan | 0.8032 |
686
+ | spearman_manhattan | 0.8168 |
687
+ | pearson_euclidean | 0.8079 |
688
+ | spearman_euclidean | 0.8196 |
689
+ | pearson_dot | 0.5952 |
690
+ | spearman_dot | 0.5992 |
691
+ | pearson_max | 0.8079 |
692
+ | spearman_max | 0.8328 |
693
+
694
+ #### Semantic Similarity
695
+ * Dataset: `sts-test-768`
696
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
697
+
698
+ | Metric | Value |
699
+ |:--------------------|:----------|
700
+ | pearson_cosine | 0.8259 |
701
+ | **spearman_cosine** | **0.842** |
702
+ | pearson_manhattan | 0.8417 |
703
+ | spearman_manhattan | 0.8394 |
704
+ | pearson_euclidean | 0.8417 |
705
+ | spearman_euclidean | 0.8393 |
706
+ | pearson_dot | 0.6531 |
707
+ | spearman_dot | 0.6396 |
708
+ | pearson_max | 0.8417 |
709
+ | spearman_max | 0.842 |
710
+
711
+ #### Semantic Similarity
712
+ * Dataset: `sts-test-512`
713
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
714
+
715
+ | Metric | Value |
716
+ |:--------------------|:-----------|
717
+ | pearson_cosine | 0.8243 |
718
+ | **spearman_cosine** | **0.8418** |
719
+ | pearson_manhattan | 0.8406 |
720
+ | spearman_manhattan | 0.8388 |
721
+ | pearson_euclidean | 0.8406 |
722
+ | spearman_euclidean | 0.8386 |
723
+ | pearson_dot | 0.6578 |
724
+ | spearman_dot | 0.6453 |
725
+ | pearson_max | 0.8406 |
726
+ | spearman_max | 0.8418 |
727
+
728
+ #### Semantic Similarity
729
+ * Dataset: `sts-test-256`
730
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
731
+
732
+ | Metric | Value |
733
+ |:--------------------|:-----------|
734
+ | pearson_cosine | 0.8128 |
735
+ | **spearman_cosine** | **0.8344** |
736
+ | pearson_manhattan | 0.835 |
737
+ | spearman_manhattan | 0.8339 |
738
+ | pearson_euclidean | 0.835 |
739
+ | spearman_euclidean | 0.8342 |
740
+ | pearson_dot | 0.6011 |
741
+ | spearman_dot | 0.5827 |
742
+ | pearson_max | 0.835 |
743
+ | spearman_max | 0.8344 |
744
+
745
+ #### Semantic Similarity
746
+ * Dataset: `sts-test-128`
747
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
748
+
749
+ | Metric | Value |
750
+ |:--------------------|:-----------|
751
+ | pearson_cosine | 0.8037 |
752
+ | **spearman_cosine** | **0.8297** |
753
+ | pearson_manhattan | 0.8283 |
754
+ | spearman_manhattan | 0.8293 |
755
+ | pearson_euclidean | 0.8286 |
756
+ | spearman_euclidean | 0.8295 |
757
+ | pearson_dot | 0.5793 |
758
+ | spearman_dot | 0.566 |
759
+ | pearson_max | 0.8286 |
760
+ | spearman_max | 0.8297 |
761
+
762
+ #### Semantic Similarity
763
+ * Dataset: `sts-test-64`
764
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
765
+
766
+ | Metric | Value |
767
+ |:--------------------|:-----------|
768
+ | pearson_cosine | 0.7862 |
769
+ | **spearman_cosine** | **0.8221** |
770
+ | pearson_manhattan | 0.8179 |
771
+ | spearman_manhattan | 0.8219 |
772
+ | pearson_euclidean | 0.8199 |
773
+ | spearman_euclidean | 0.8241 |
774
+ | pearson_dot | 0.5115 |
775
+ | spearman_dot | 0.5024 |
776
+ | pearson_max | 0.8199 |
777
+ | spearman_max | 0.8241 |
778
+
779
+ #### Semantic Similarity
780
+ * Dataset: `sts-test-32`
781
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
782
+
783
+ | Metric | Value |
784
+ |:--------------------|:-----------|
785
+ | pearson_cosine | 0.7616 |
786
+ | **spearman_cosine** | **0.8126** |
787
+ | pearson_manhattan | 0.7996 |
788
+ | spearman_manhattan | 0.8084 |
789
+ | pearson_euclidean | 0.8024 |
790
+ | spearman_euclidean | 0.8116 |
791
+ | pearson_dot | 0.4647 |
792
+ | spearman_dot | 0.451 |
793
+ | pearson_max | 0.8024 |
794
+ | spearman_max | 0.8126 |
795
+
796
+ <!--
797
+ ## Bias, Risks and Limitations
798
+
799
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
800
+ -->
801
+
802
+ <!--
803
+ ### Recommendations
804
+
805
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
806
+ -->
807
+
808
+ ## Training Details
809
+
810
+ ### Training Dataset
811
+
812
+ #### sentence-transformers/stsb
813
+
814
+ * Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
815
+ * Size: 5,749 training samples
816
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
817
+ * Approximate statistics based on the first 1000 samples:
818
+ | | sentence1 | sentence2 | score |
819
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
820
+ | type | string | string | float |
821
+ | details | <ul><li>min: 6 tokens</li><li>mean: 10.0 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.95 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
822
+ * Samples:
823
+ | sentence1 | sentence2 | score |
824
+ |:-----------------------------------------------------------|:----------------------------------------------------------------------|:------------------|
825
+ | <code>A plane is taking off.</code> | <code>An air plane is taking off.</code> | <code>1.0</code> |
826
+ | <code>A man is playing a large flute.</code> | <code>A man is playing a flute.</code> | <code>0.76</code> |
827
+ | <code>A man is spreading shreded cheese on a pizza.</code> | <code>A man is spreading shredded cheese on an uncooked pizza.</code> | <code>0.76</code> |
828
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
829
+ ```json
830
+ {
831
+ "loss": "CoSENTLoss",
832
+ "matryoshka_dims": [
833
+ 768,
834
+ 512,
835
+ 256,
836
+ 128,
837
+ 64,
838
+ 32
839
+ ],
840
+ "matryoshka_weights": [
841
+ 1,
842
+ 1,
843
+ 1,
844
+ 1,
845
+ 1,
846
+ 1
847
+ ],
848
+ "n_dims_per_step": -1
849
+ }
850
+ ```
851
+
852
+ ### Evaluation Dataset
853
+
854
+ #### sentence-transformers/stsb
855
+
856
+ * Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
857
+ * Size: 1,500 evaluation samples
858
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
859
+ * Approximate statistics based on the first 1000 samples:
860
+ | | sentence1 | sentence2 | score |
861
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
862
+ | type | string | string | float |
863
+ | details | <ul><li>min: 5 tokens</li><li>mean: 15.1 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.11 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> |
864
+ * Samples:
865
+ | sentence1 | sentence2 | score |
866
+ |:--------------------------------------------------|:------------------------------------------------------|:------------------|
867
+ | <code>A man with a hard hat is dancing.</code> | <code>A man wearing a hard hat is dancing.</code> | <code>1.0</code> |
868
+ | <code>A young child is riding a horse.</code> | <code>A child is riding a horse.</code> | <code>0.95</code> |
869
+ | <code>A man is feeding a mouse to a snake.</code> | <code>The man is feeding a mouse to the snake.</code> | <code>1.0</code> |
870
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
871
+ ```json
872
+ {
873
+ "loss": "CoSENTLoss",
874
+ "matryoshka_dims": [
875
+ 768,
876
+ 512,
877
+ 256,
878
+ 128,
879
+ 64,
880
+ 32
881
+ ],
882
+ "matryoshka_weights": [
883
+ 1,
884
+ 1,
885
+ 1,
886
+ 1,
887
+ 1,
888
+ 1
889
+ ],
890
+ "n_dims_per_step": -1
891
+ }
892
+ ```
893
+
894
+ ### Training Hyperparameters
895
+ #### Non-Default Hyperparameters
896
+
897
+ - `eval_strategy`: steps
898
+ - `per_device_train_batch_size`: 16
899
+ - `per_device_eval_batch_size`: 16
900
+ - `num_train_epochs`: 4
901
+ - `warmup_ratio`: 0.1
902
+ - `fp16`: True
903
+
904
+ #### All Hyperparameters
905
+ <details><summary>Click to expand</summary>
906
+
907
+ - `overwrite_output_dir`: False
908
+ - `do_predict`: False
909
+ - `eval_strategy`: steps
910
+ - `prediction_loss_only`: True
911
+ - `per_device_train_batch_size`: 16
912
+ - `per_device_eval_batch_size`: 16
913
+ - `per_gpu_train_batch_size`: None
914
+ - `per_gpu_eval_batch_size`: None
915
+ - `gradient_accumulation_steps`: 1
916
+ - `eval_accumulation_steps`: None
917
+ - `learning_rate`: 5e-05
918
+ - `weight_decay`: 0.0
919
+ - `adam_beta1`: 0.9
920
+ - `adam_beta2`: 0.999
921
+ - `adam_epsilon`: 1e-08
922
+ - `max_grad_norm`: 1.0
923
+ - `num_train_epochs`: 4
924
+ - `max_steps`: -1
925
+ - `lr_scheduler_type`: linear
926
+ - `lr_scheduler_kwargs`: {}
927
+ - `warmup_ratio`: 0.1
928
+ - `warmup_steps`: 0
929
+ - `log_level`: passive
930
+ - `log_level_replica`: warning
931
+ - `log_on_each_node`: True
932
+ - `logging_nan_inf_filter`: True
933
+ - `save_safetensors`: True
934
+ - `save_on_each_node`: False
935
+ - `save_only_model`: False
936
+ - `restore_callback_states_from_checkpoint`: False
937
+ - `no_cuda`: False
938
+ - `use_cpu`: False
939
+ - `use_mps_device`: False
940
+ - `seed`: 42
941
+ - `data_seed`: None
942
+ - `jit_mode_eval`: False
943
+ - `use_ipex`: False
944
+ - `bf16`: False
945
+ - `fp16`: True
946
+ - `fp16_opt_level`: O1
947
+ - `half_precision_backend`: auto
948
+ - `bf16_full_eval`: False
949
+ - `fp16_full_eval`: False
950
+ - `tf32`: None
951
+ - `local_rank`: 0
952
+ - `ddp_backend`: None
953
+ - `tpu_num_cores`: None
954
+ - `tpu_metrics_debug`: False
955
+ - `debug`: []
956
+ - `dataloader_drop_last`: False
957
+ - `dataloader_num_workers`: 0
958
+ - `dataloader_prefetch_factor`: None
959
+ - `past_index`: -1
960
+ - `disable_tqdm`: False
961
+ - `remove_unused_columns`: True
962
+ - `label_names`: None
963
+ - `load_best_model_at_end`: False
964
+ - `ignore_data_skip`: False
965
+ - `fsdp`: []
966
+ - `fsdp_min_num_params`: 0
967
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
968
+ - `fsdp_transformer_layer_cls_to_wrap`: None
969
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
970
+ - `deepspeed`: None
971
+ - `label_smoothing_factor`: 0.0
972
+ - `optim`: adamw_torch
973
+ - `optim_args`: None
974
+ - `adafactor`: False
975
+ - `group_by_length`: False
976
+ - `length_column_name`: length
977
+ - `ddp_find_unused_parameters`: None
978
+ - `ddp_bucket_cap_mb`: None
979
+ - `ddp_broadcast_buffers`: False
980
+ - `dataloader_pin_memory`: True
981
+ - `dataloader_persistent_workers`: False
982
+ - `skip_memory_metrics`: True
983
+ - `use_legacy_prediction_loop`: False
984
+ - `push_to_hub`: False
985
+ - `resume_from_checkpoint`: None
986
+ - `hub_model_id`: None
987
+ - `hub_strategy`: every_save
988
+ - `hub_private_repo`: False
989
+ - `hub_always_push`: False
990
+ - `gradient_checkpointing`: False
991
+ - `gradient_checkpointing_kwargs`: None
992
+ - `include_inputs_for_metrics`: False
993
+ - `eval_do_concat_batches`: True
994
+ - `fp16_backend`: auto
995
+ - `push_to_hub_model_id`: None
996
+ - `push_to_hub_organization`: None
997
+ - `mp_parameters`:
998
+ - `auto_find_batch_size`: False
999
+ - `full_determinism`: False
1000
+ - `torchdynamo`: None
1001
+ - `ray_scope`: last
1002
+ - `ddp_timeout`: 1800
1003
+ - `torch_compile`: False
1004
+ - `torch_compile_backend`: None
1005
+ - `torch_compile_mode`: None
1006
+ - `dispatch_batches`: None
1007
+ - `split_batches`: None
1008
+ - `include_tokens_per_second`: False
1009
+ - `include_num_input_tokens_seen`: False
1010
+ - `neftune_noise_alpha`: None
1011
+ - `optim_target_modules`: None
1012
+ - `batch_eval_metrics`: False
1013
+ - `batch_sampler`: batch_sampler
1014
+ - `multi_dataset_batch_sampler`: proportional
1015
+
1016
+ </details>
1017
+
1018
+ ### Training Logs
1019
+ | Epoch | Step | Training Loss | loss | sts-dev-128_spearman_cosine | sts-dev-256_spearman_cosine | sts-dev-32_spearman_cosine | sts-dev-512_spearman_cosine | sts-dev-64_spearman_cosine | sts-dev-768_spearman_cosine | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-32_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine |
1020
+ |:------:|:----:|:-------------:|:-------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|:----------------------------:|:---------------------------:|:----------------------------:|
1021
+ | 0.2778 | 100 | 28.2763 | 26.3514 | 0.8250 | 0.8306 | 0.7893 | 0.8308 | 0.8094 | 0.8314 | - | - | - | - | - | - |
1022
+ | 0.5556 | 200 | 26.3731 | 26.0000 | 0.8373 | 0.8412 | 0.8026 | 0.8463 | 0.8267 | 0.8467 | - | - | - | - | - | - |
1023
+ | 0.8333 | 300 | 26.0243 | 26.5062 | 0.8434 | 0.8495 | 0.8073 | 0.8534 | 0.8297 | 0.8556 | - | - | - | - | - | - |
1024
+ | 1.1111 | 400 | 25.3448 | 28.1742 | 0.8496 | 0.8544 | 0.8157 | 0.8593 | 0.8361 | 0.8611 | - | - | - | - | - | - |
1025
+ | 1.3889 | 500 | 24.7922 | 27.0245 | 0.8488 | 0.8529 | 0.8149 | 0.8574 | 0.8352 | 0.8589 | - | - | - | - | - | - |
1026
+ | 1.6667 | 600 | 24.7596 | 26.9771 | 0.8516 | 0.8558 | 0.8199 | 0.8601 | 0.8389 | 0.8619 | - | - | - | - | - | - |
1027
+ | 1.9444 | 700 | 24.7165 | 26.2923 | 0.8602 | 0.8634 | 0.8277 | 0.8665 | 0.8476 | 0.8681 | - | - | - | - | - | - |
1028
+ | 2.2222 | 800 | 23.7934 | 27.9207 | 0.8570 | 0.8608 | 0.8263 | 0.8640 | 0.8460 | 0.8656 | - | - | - | - | - | - |
1029
+ | 2.5 | 900 | 23.4618 | 27.5855 | 0.8583 | 0.8618 | 0.8257 | 0.8657 | 0.8456 | 0.8675 | - | - | - | - | - | - |
1030
+ | 2.7778 | 1000 | 23.1831 | 29.9791 | 0.8533 | 0.8557 | 0.8232 | 0.8599 | 0.8411 | 0.8612 | - | - | - | - | - | - |
1031
+ | 3.0556 | 1100 | 23.1935 | 28.7866 | 0.8612 | 0.8636 | 0.8329 | 0.8677 | 0.8504 | 0.8689 | - | - | - | - | - | - |
1032
+ | 3.3333 | 1200 | 22.1447 | 30.0641 | 0.8597 | 0.8630 | 0.8285 | 0.8661 | 0.8488 | 0.8676 | - | - | - | - | - | - |
1033
+ | 3.6111 | 1300 | 21.9271 | 30.9347 | 0.8613 | 0.8648 | 0.8309 | 0.8679 | 0.8509 | 0.8697 | - | - | - | - | - | - |
1034
+ | 3.8889 | 1400 | 21.973 | 30.9209 | 0.8626 | 0.8656 | 0.8328 | 0.8690 | 0.8523 | 0.8705 | - | - | - | - | - | - |
1035
+ | 4.0 | 1440 | - | - | - | - | - | - | - | - | 0.8297 | 0.8344 | 0.8126 | 0.8418 | 0.8221 | 0.8420 |
1036
+
1037
+
1038
+ ### Framework Versions
1039
+ - Python: 3.10.12
1040
+ - Sentence Transformers: 3.0.0
1041
+ - Transformers: 4.41.1
1042
+ - PyTorch: 2.3.0+cu121
1043
+ - Accelerate: 0.30.1
1044
+ - Datasets: 2.19.1
1045
+ - Tokenizers: 0.19.1
1046
+
1047
+ ## Citation
1048
+
1049
+ ### BibTeX
1050
+
1051
+ #### Sentence Transformers
1052
+ ```bibtex
1053
+ @inproceedings{reimers-2019-sentence-bert,
1054
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
1055
+ author = "Reimers, Nils and Gurevych, Iryna",
1056
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
1057
+ month = "11",
1058
+ year = "2019",
1059
+ publisher = "Association for Computational Linguistics",
1060
+ url = "https://arxiv.org/abs/1908.10084",
1061
+ }
1062
+ ```
1063
+
1064
+ #### MatryoshkaLoss
1065
+ ```bibtex
1066
+ @misc{kusupati2024matryoshka,
1067
+ title={Matryoshka Representation Learning},
1068
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
1069
+ year={2024},
1070
+ eprint={2205.13147},
1071
+ archivePrefix={arXiv},
1072
+ primaryClass={cs.LG}
1073
+ }
1074
+ ```
1075
+
1076
+ #### CoSENTLoss
1077
+ ```bibtex
1078
+ @online{kexuefm-8847,
1079
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
1080
+ author={Su Jianlin},
1081
+ year={2022},
1082
+ month={Jan},
1083
+ url={https://kexue.fm/archives/8847},
1084
+ }
1085
+ ```
1086
+
1087
+ <!--
1088
+ ## Glossary
1089
+
1090
+ *Clearly define terms in order to be accessible across audiences.*
1091
+ -->
1092
+
1093
+ <!--
1094
+ ## Model Card Authors
1095
+
1096
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
1097
+ -->
1098
+
1099
+ <!--
1100
+ ## Model Card Contact
1101
+
1102
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
1103
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "distilbert-base-uncased",
3
+ "activation": "gelu",
4
+ "architectures": [
5
+ "DistilBertModel"
6
+ ],
7
+ "attention_dropout": 0.1,
8
+ "dim": 768,
9
+ "dropout": 0.1,
10
+ "hidden_dim": 3072,
11
+ "initializer_range": 0.02,
12
+ "max_position_embeddings": 512,
13
+ "model_type": "distilbert",
14
+ "n_heads": 12,
15
+ "n_layers": 6,
16
+ "pad_token_id": 0,
17
+ "qa_dropout": 0.1,
18
+ "seq_classif_dropout": 0.2,
19
+ "sinusoidal_pos_embds": false,
20
+ "tie_weights_": true,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.1",
23
+ "vocab_size": 30522
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.0",
4
+ "transformers": "4.41.1",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55378706b1488589936650f2a54a73ba783faa33b67fa354d08c87ed0e055942
3
+ size 265462608
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "model_max_length": 512,
49
+ "pad_token": "[PAD]",
50
+ "sep_token": "[SEP]",
51
+ "strip_accents": null,
52
+ "tokenize_chinese_chars": true,
53
+ "tokenizer_class": "DistilBertTokenizer",
54
+ "unk_token": "[UNK]"
55
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff