File size: 25,980 Bytes
73687de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0eaefd
73687de
 
 
 
 
 
 
 
 
 
f0eaefd
73687de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0eaefd
73687de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0eaefd
73687de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2697
- loss:MatryoshkaLoss
- loss:CoSENTLoss
base_model: nomic-ai/modernbert-embed-base
widget:
- source_sentence: En un mercado de granjeros, se encuentra un hombre.
  sentences:
  - Un abogado de la CPI detenido en Libia está ahora mismo encarando un período de
    detención de 45 días
  - Un hombre está presente en un mercado donde se venden productos agrícolas directamente
    de los agricultores.
  - ¿Existe la posibilidad de que cambie de opinión si no se expresa de manera enérgica
    o muestra un comportamiento inapropiado?
- source_sentence: Una mujer está posada en una postura con los brazos abiertos mientras
    otra persona le toma una fotografía.
  sentences:
  - Un hombre se encuentra parado en medio de una multitud sujetando un objeto de
    color blanco.
  - Las personas están cerca del agua.
  - Frente a una estatua de una vaca, hay una mujer, un niño pequeño y un bebé diminuto.
- source_sentence: Un grupo de cuatro niños está observando los diferentes animales
    que están en el establo.
  sentences:
  - Evita apoyar todo tu peso en los brazos, ya que tus manos no están diseñadas para
    soportar esa presión constante.
  - Los niños están mirando atentamente a una oveja.
  - Un puma persigue a un oso grande en el bosque.
- source_sentence: La gente se balancea saltando al agua mientras otros pescan en
    el fondo del mar.
  sentences:
  - Dos individuos observan el agua con atención.
  - Siempre golpeamos suavemente a nuestros hijos en la boca para mostrarles que su
    boca es lo que les causa dolor.
  - Aunque el sistema de prioridad al primero en llegar beneficia a dos participantes,
    no asegura definitivamente la exclusión de terceros.
- source_sentence: El cordero está mirando hacia la cámara.
  sentences:
  - Manmohan en Teherán insta a NAM a tomar una posición clara sobre el conflicto
    en Siria
  - Un gato está mirando hacia la cámara también.
  - '"Sí, no deseo estar presente durante este testimonio", declaró tranquilamente
    Peterson, de 31 años, al juez cuando fue devuelto a su celda.'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on nomic-ai/modernbert-embed-base
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 768
      type: sts-dev-768
    metrics:
    - type: pearson_cosine
      value: 0.7498914121357008
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.7531670275662775
      name: Spearman Cosine
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 512
      type: sts-dev-512
    metrics:
    - type: pearson_cosine
      value: 0.7468285624371191
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.7482342767593612
      name: Spearman Cosine
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 256
      type: sts-dev-256
    metrics:
    - type: pearson_cosine
      value: 0.7419098803201045
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.7450577925521013
      name: Spearman Cosine
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 128
      type: sts-dev-128
    metrics:
    - type: pearson_cosine
      value: 0.7262860099881795
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.7304432975238186
      name: Spearman Cosine
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 64
      type: sts-dev-64
    metrics:
    - type: pearson_cosine
      value: 0.6973267849431932
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.7069603266334332
      name: Spearman Cosine
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 768
      type: sts-test-768
    metrics:
    - type: pearson_cosine
      value: 0.8673484326459211
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8767387684433159
      name: Spearman Cosine
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 512
      type: sts-test-512
    metrics:
    - type: pearson_cosine
      value: 0.8665336885415594
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8751868367625472
      name: Spearman Cosine
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 256
      type: sts-test-256
    metrics:
    - type: pearson_cosine
      value: 0.8568125590206718
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8702353416571491
      name: Spearman Cosine
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 128
      type: sts-test-128
    metrics:
    - type: pearson_cosine
      value: 0.8485344363338887
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8617402150766132
      name: Spearman Cosine
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 64
      type: sts-test-64
    metrics:
    - type: pearson_cosine
      value: 0.8193790032247387
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8419631939550043
      name: Spearman Cosine
---

# SentenceTransformer based on nomic-ai/modernbert-embed-base

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) on the stsb_multi_es_augmented (private) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) <!-- at revision bb0033c9f3def40c3c5b26ff0b53c74f3320d703 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - Private stsb dataset

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("mrm8488/modernbert-embed-base-ft-sts-spanish-matryoshka-768-64-5e")
# Run inference
sentences = [
    'El cordero está mirando hacia la cámara.',
    'Un gato está mirando hacia la cámara también.',
    '"Sí, no deseo estar presente durante este testimonio", declaró tranquilamente Peterson, de 31 años, al juez cuando fue devuelto a su celda.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity

* Datasets: `sts-dev-768`, `sts-dev-512`, `sts-dev-256`, `sts-dev-128`, `sts-dev-64`, `sts-test-768`, `sts-test-512`, `sts-test-256`, `sts-test-128` and `sts-test-64`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | sts-dev-768 | sts-dev-512 | sts-dev-256 | sts-dev-128 | sts-dev-64 | sts-test-768 | sts-test-512 | sts-test-256 | sts-test-128 | sts-test-64 |
|:--------------------|:------------|:------------|:------------|:------------|:-----------|:-------------|:-------------|:-------------|:-------------|:------------|
| pearson_cosine      | 0.7499      | 0.7468      | 0.7419      | 0.7263      | 0.6973     | 0.8673       | 0.8665       | 0.8568       | 0.8485       | 0.8194      |
| **spearman_cosine** | **0.7532**  | **0.7482**  | **0.7451**  | **0.7304**  | **0.707**  | **0.8767**   | **0.8752**   | **0.8702**   | **0.8617**   | **0.842**   |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### stsb_multi_es_augmented (private)

* Size: 2,697 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                          | score                                                          |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             | float                                                          |
  | details | <ul><li>min: 9 tokens</li><li>mean: 28.42 tokens</li><li>max: 96 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 28.01 tokens</li><li>max: 92 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 2.72</li><li>max: 5.0</li></ul> |
* Samples:
  | sentence1                                                                                             | sentence2                                                                                                    | score                          |
  |:------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------|:-------------------------------|
  | <code>El pájaro de tamaño reducido se posó con delicadeza en una rama cubierta de escarcha.</code>    | <code>Un ave de color amarillo descansaba tranquilamente en una rama.</code>                                 | <code>3.200000047683716</code> |
  | <code>Una chica está tocando la flauta en un parque.</code>                                           | <code>Un grupo de músicos está tocando en un escenario al aire libre.</code>                                 | <code>1.286</code>             |
  | <code>La aclamada escritora británica, Doris Lessing, galardonada con el premio Nobel, fallece</code> | <code>La destacada autora británica, Doris Lessing, reconocida con el prestigioso Premio Nobel, muere</code> | <code>4.199999809265137</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "CoSENTLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Evaluation Dataset

#### stsb_multi_es_augmented (private)

* Size: 697 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 697 samples:
  |         | sentence1                                                                         | sentence2                                                                         | score                                                         |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | float                                                         |
  | details | <ul><li>min: 9 tokens</li><li>mean: 29.35 tokens</li><li>max: 87 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 28.52 tokens</li><li>max: 81 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 2.3</li><li>max: 5.0</li></ul> |
* Samples:
  | sentence1                                                                                                                                                           | sentence2                                                                                                                                                     | score                          |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------|
  | <code>Un incendio ocurrido en un hospital psiquiátrico ruso resultó en la trágica muerte de 38 personas.</code>                                                     | <code>Se teme que el incendio en un hospital psiquiátrico ruso cause la pérdida de la vida de 38 individuos.</code>                                           | <code>4.199999809265137</code> |
  | <code>"Street dijo que el otro individuo a veces se siente avergonzado de su fiesta, lo cual provoca risas en la multitud"</code>                                   | <code>"A veces, el otro tipo se encuentra avergonzado de su fiesta y no se le puede culpar."</code>                                                           | <code>3.5</code>               |
  | <code>El veterano diplomático de Malasia tuvo un encuentro con Suu Kyi el miércoles en la casa del lago en Yangon donde permanece bajo arresto domiciliario.</code> | <code>Razali Ismail tuvo una reunión de 90 minutos con Suu Kyi, quien ganó el Premio Nobel de la Paz en 1991, en su casa del lago donde está recluida.</code> | <code>3.691999912261963</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "CoSENTLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 5
- `warmup_ratio`: 0.1
- `bf16`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | Validation Loss | sts-dev-768_spearman_cosine | sts-dev-512_spearman_cosine | sts-dev-256_spearman_cosine | sts-dev-128_spearman_cosine | sts-dev-64_spearman_cosine | sts-test-768_spearman_cosine | sts-test-512_spearman_cosine | sts-test-256_spearman_cosine | sts-test-128_spearman_cosine | sts-test-64_spearman_cosine |
|:------:|:----:|:-------------:|:---------------:|:---------------------------:|:---------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|
| 0.5917 | 100  | 23.7709       | 22.5494         | 0.7185                      | 0.7146                      | 0.7055                      | 0.6794                      | 0.6570                     | -                            | -                            | -                            | -                            | -                           |
| 1.1834 | 200  | 22.137        | 22.7634         | 0.7449                      | 0.7412                      | 0.7439                      | 0.7287                      | 0.7027                     | -                            | -                            | -                            | -                            | -                           |
| 1.7751 | 300  | 21.5527       | 22.6985         | 0.7321                      | 0.7281                      | 0.7243                      | 0.7063                      | 0.6862                     | -                            | -                            | -                            | -                            | -                           |
| 2.3669 | 400  | 20.5745       | 24.0021         | 0.7302                      | 0.7264                      | 0.7221                      | 0.7097                      | 0.6897                     | -                            | -                            | -                            | -                            | -                           |
| 2.9586 | 500  | 20.0861       | 24.0091         | 0.7392                      | 0.7361                      | 0.7293                      | 0.7124                      | 0.6906                     | -                            | -                            | -                            | -                            | -                           |
| 3.5503 | 600  | 18.8191       | 26.9012         | 0.7502                      | 0.7462                      | 0.7399                      | 0.7207                      | 0.6960                     | -                            | -                            | -                            | -                            | -                           |
| 4.1420 | 700  | 18.3          | 29.0209         | 0.7496                      | 0.7454                      | 0.7432                      | 0.7284                      | 0.7065                     | -                            | -                            | -                            | -                            | -                           |
| 4.7337 | 800  | 17.6496       | 28.9536         | 0.7532                      | 0.7482                      | 0.7451                      | 0.7304                      | 0.7070                     | -                            | -                            | -                            | -                            | -                           |
| 5.0    | 845  | -             | -               | -                           | -                           | -                           | -                           | -                          | 0.8767                       | 0.8752                       | 0.8702                       | 0.8617                       | 0.8420                      |


### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.48.0
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### CoSENTLoss
```bibtex
@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->