random

This is a standard PEFT LoRA derived from flux/unknown-model.

The main validation prompt used during training was:

A Simple Pencil sketch of Marilyn Monroe, showcasing her iconic smile and glamorous hairstyle. The shading captures the softness of her features and the elegance of her famous pose, framed by a hint of her signature wardrobe.

Validation settings

  • CFG: 3.5
  • CFG Rescale: 0.0
  • Steps: 35
  • Sampler: FlowMatchEulerDiscreteScheduler
  • Seed: 42
  • Resolution: 1024x1024
  • Skip-layer guidance:

Note: The validation settings are not necessarily the same as the training settings.

You can find some example images in the following gallery:

Prompt
unconditional (blank prompt)
Negative Prompt
blurry, cropped, ugly
Prompt
A Simple Pencil sketch of Marilyn Monroe, showcasing her iconic smile and glamorous hairstyle. The shading captures the softness of her features and the elegance of her famous pose, framed by a hint of her signature wardrobe.
Negative Prompt
blurry, cropped, ugly

The text encoder was not trained. You may reuse the base model text encoder for inference.

Training settings

  • Training epochs: 2

  • Training steps: 1000

  • Learning rate: 0.0001

    • Learning rate schedule: polynomial
    • Warmup steps: 100
  • Max grad norm: 2.0

  • Effective batch size: 1

    • Micro-batch size: 1
    • Gradient accumulation steps: 1
    • Number of GPUs: 1
  • Gradient checkpointing: True

  • Prediction type: flow-matching (extra parameters=['shift=3', 'flux_guidance_mode=constant', 'flux_guidance_value=1.0', 'flow_matching_loss=compatible', 'flux_lora_target=all'])

  • Optimizer: adamw_bf16

  • Trainable parameter precision: Pure BF16

  • Caption dropout probability: 10.0%

  • LoRA Rank: 32

  • LoRA Alpha: None

  • LoRA Dropout: 0.1

  • LoRA initialisation style: default

Datasets

pencil-sketch-image

  • Repeats: 10
  • Total number of images: 31
  • Total number of aspect buckets: 1
  • Resolution: 1.048576 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: square
  • Used for regularisation data: No

Inference

import torch
from diffusers import DiffusionPipeline

model_id = '/workspace/FLUX.1-dev'
adapter_id = 'mrtuandao/random'
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
pipeline.load_lora_weights(adapter_id)

prompt = "A Simple Pencil sketch of Marilyn Monroe, showcasing her iconic smile and glamorous hairstyle. The shading captures the softness of her features and the elegance of her famous pose, framed by a hint of her signature wardrobe."


## Optional: quantise the model to save on vram.
## Note: The model was not quantised during training, so it is not necessary to quantise it during inference time.
#from optimum.quanto import quantize, freeze, qint8
#quantize(pipeline.transformer, weights=qint8)
#freeze(pipeline.transformer)
    
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
image = pipeline(
    prompt=prompt,
    num_inference_steps=35,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
    width=1024,
    height=1024,
    guidance_scale=3.5,
).images[0]
image.save("output.png", format="PNG")
Downloads last month
31
Inference Examples
Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.