File size: 7,405 Bytes
75d27f9 31656c7 75d27f9 31656c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
---
license: mit
language:
- zh
- en
metrics:
- cer
- bleu
tags:
- asr
- automatic-speech-recognition
- automatic-speech-translation
- speech-translation
- speech-recognition
---
# MooER (ζ©θ³): an LLM-based Speech Recognition and Translation Model from Moore Threads
**Online Demo**: https://mooer-speech.mthreads.com:10077/
## π₯ Update
We release a new model *MooER-80K-v2* using 80K hours of data. Currently, *MooER-80K-v2* supports the ASR task. The AST and multi-task models will be released soon.
## π Introduction
We introduce **MooER (ζ©θ³)**: an LLM-based speech recognition and translation model developed by Moore Threads. With the *MooER* framework, you can transcribe the speech into text (speech recognition or, ASR), and translate it into other languages (speech translation or, AST) in a end-to-end manner. The performance of *MooER* is demonstrated in the subsequent section, along with our insights into model configurations, training strategies, and more, provided in our [technical report](https://arxiv.org/abs/2408.05101).
For the usage of the model files, please refer to our [GitHub](https://github.com/MooreThreads/MooER)
<br>
<p align="center">
<img src="assets/framework.png" width="600"/>
<p>
<br>
## π₯ Evaluation Results
We demonstrate the training data and the evaluation results below. For more comprehensive information, please refer to our [report](https://arxiv.org/pdf/2408.05101).
### Training data
We utilize 5k hours of data (MT5K) to train our basic *MooER-5K* model. The data sources include:
| Dataset | Duration |
|---------------|---------------|
| aishell2 | 137h |
| librispeech | 131h |
| multi_cn | 100h |
| wenetspeech | 1361h |
| in-house data | 3274h |
Note that, data from the open-source datasets were randomly selected from the full training set. The in-house data, collected internally without text, were transcribed using a third-party ASR service.
Since all the above datasets were originally designed only for the speech recognition task, no translation results are available. To train our speech translation model, we used a third-party translation service to generate pseudo-labels. No data filtering techniques were applied.
At this moment, we are also developing a new model trained with 80K hours of data.
### Speech Recognition
The performance of speech recognition is evaluated using WER/CER.
<table>
<tr>
<th>Language</th>
<th>Testset</th>
<th>Paraformer-large</th>
<th>SenseVoice-small</th>
<th>Qwen-audio</th>
<th>Whisper-large-v3</th>
<th>SeamlessM4T-v2</th>
<th>MooER-5K</th>
<th>MooER-80K</th>
<th>MooER-80K-v2</th>
</tr>
<tr>
<td rowspan="7">Chinese</td>
<td>aishell1</td>
<td>1.93</td>
<td>3.03</td>
<td>1.43</td>
<td>7.86</td>
<td>4.09</td>
<td>1.93</td>
<td>1.25</td>
<td>1.00</td>
</tr>
<tr>
<td>aishell2_ios</td>
<td>2.85</td>
<td>3.79</td>
<td>3.57</td>
<td>5.38</td>
<td>4.81</td>
<td>3.17</td>
<td>2.67</td>
<td>2.62</td>
</tr>
<tr>
<td>test_magicdata</td>
<td>3.66</td>
<td>3.81</td>
<td>5.31</td>
<td>8.36</td>
<td>9.69</td>
<td>3.48</td>
<td>2.52</td>
<td>2.17</td>
</tr>
<tr>
<td>test_thchs</td>
<td>3.99</td>
<td>5.17</td>
<td>4.86</td>
<td>9.06</td>
<td>7.14</td>
<td>4.11</td>
<td>3.14</td>
<td>3.00</td>
</tr>
<tr>
<td>fleurs cmn_dev</td>
<td>5.56</td>
<td>6.39</td>
<td>10.54</td>
<td>4.54</td>
<td>7.12</td>
<td>5.81</td>
<td>5.23</td>
<td>5.15</td>
</tr>
<tr>
<td>fleurs cmn_test</td>
<td>6.92</td>
<td>7.36</td>
<td>11.07</td>
<td>5.24</td>
<td>7.66</td>
<td>6.77</td>
<td>6.18</td>
<td>6.14</td>
</tr>
<tr>
<td>average</td>
<td><strong>4.15</strong></td>
<td><strong>4.93</strong></td>
<td><strong>6.13</strong></td>
<td><strong>6.74</strong></td>
<td><strong>6.75</strong></td>
<td><strong>4.21</strong></td>
<td><strong>3.50</strong></td>
<td><strong>3.35</strong></td>
</tr>
<tr>
<td rowspan="7">English</td>
<td>librispeech test_clean</td>
<td>14.15</td>
<td>4.07</td>
<td>2.15</td>
<td>3.42</td>
<td>2.77</td>
<td>7.78</td>
<td>4.11</td>
<td>3.57</td>
</tr>
<tr>
<td>librispeech test_other</td>
<td>22.99</td>
<td>8.26</td>
<td>4.68</td>
<td>5.62</td>
<td>5.25</td>
<td>15.25</td>
<td>9.99</td>
<td>9.09</td>
</tr>
<tr>
<td>fleurs eng_dev</td>
<td>24.93</td>
<td>12.92</td>
<td>22.53</td>
<td>11.63</td>
<td>11.36</td>
<td>18.89</td>
<td>13.32</td>
<td>13.12</td>
</tr>
<tr>
<td>fleurs eng_test</td>
<td>26.81</td>
<td>13.41</td>
<td>22.51</td>
<td>12.57</td>
<td>11.82</td>
<td>20.41</td>
<td>14.97</td>
<td>14.74</td>
</tr>
<tr>
<td>gigaspeech dev</td>
<td>24.23</td>
<td>19.44</td>
<td>12.96</td>
<td>19.18</td>
<td>28.01</td>
<td>23.46</td>
<td>16.92</td>
<td>17.34</td>
</tr>
<tr>
<td>gigaspeech test</td>
<td>23.07</td>
<td>16.65</td>
<td>13.26</td>
<td>22.34</td>
<td>28.65</td>
<td>22.09</td>
<td>16.64</td>
<td>16.97</td>
</tr>
<tr>
<td>average</td>
<td><strong>22.70</strong></td>
<td><strong>12.46</strong></td>
<td><strong>13.02</strong></td>
<td><strong>12.46</strong></td>
<td><strong>14.64</strong></td>
<td><strong>17.98</strong></td>
<td><strong>12.66</strong></td>
<td><strong>12.47</strong></td>
</tr>
</table>
### Speech Translation (zh -> en)
For speech translation, the performanced is evaluated using BLEU score.
| Testset | Speech-LLaMA | Whisper-large-v3 | Qwen-audio | Qwen2-audio | SeamlessM4T-v2 | MooER-5K | MooER-5K-MTL |
|--------|-------------|-------------------|------------|-------------|-----------------|--------|--------------|
|CoVoST1 zh2en | - | 13.5 | 13.5 | - | 25.3 | - | **30.2** |
|CoVoST2 zh2en | 12.3 | 12.2 | 15.7 | 24.4 | 22.2 | 23.4 | **25.2** |
|CCMT2019 dev | - | 15.9 | 12.0 | - | 14.8 | - | **19.6** |
## π Getting Started
Please visit our [GitHub](https://github.com/MooreThreads/MooER) for the setup and usage.
## π§Ύ License
Please see the [LICENSE](LICENSE).
## π Citation
If you find MooER useful for your research, please π this repo and cite our work using the following BibTeX:
```bibtex
@article{liang2024mooer,
title = {MooER: an LLM-based Speech Recognition and Translation Model from Moore Threads},
author = {Zhenlin Liang, Junhao Xu, Yi Liu, Yichao Hu, Jian Li, Yajun Zheng, Meng Cai, Hua Wang},
journal = {arXiv preprint arXiv:2408.05101},
url = {https://arxiv.org/abs/2408.05101},
year = {2024}
}
```
## π§ Contact
If you encouter any problems, feel free to create a discussion.
Moore Threads Website: **https://www.mthreads.com/**
<br>
<p align="left">
<img src="assets/MTLogo.png" width="300"/>
<p>
<br> |