File size: 7,405 Bytes
75d27f9
 
31656c7
 
 
 
 
 
 
 
 
 
 
 
75d27f9
31656c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
---

license: mit
language:
- zh
- en
metrics:
- cer
- bleu
tags:
- asr
- automatic-speech-recognition
- automatic-speech-translation
- speech-translation
- speech-recognition
---



# MooER (ζ‘©θ€³): an LLM-based Speech Recognition and Translation Model from Moore Threads

**Online Demo**: https://mooer-speech.mthreads.com:10077/

## πŸ”₯ Update

We release a new model *MooER-80K-v2* using 80K hours of data. Currently, *MooER-80K-v2* supports the ASR task. The AST and multi-task models will be released soon.

## πŸ“– Introduction

We introduce **MooER (ζ‘©θ€³)**: an LLM-based speech recognition and translation model developed by Moore Threads. With the *MooER* framework, you can transcribe the speech into text (speech recognition or, ASR), and  translate it into other languages (speech translation or, AST) in a end-to-end manner. The performance of *MooER* is demonstrated in the subsequent section, along with our insights into model configurations, training strategies, and more, provided in our [technical report](https://arxiv.org/abs/2408.05101).

For the usage of the model files, please refer to our [GitHub](https://github.com/MooreThreads/MooER)

<br>
<p align="center">
    <img src="assets/framework.png" width="600"/>

<p>

<br>


## πŸ₯Š Evaluation Results

We demonstrate the training data and the evaluation results below. For more comprehensive information, please refer to our [report](https://arxiv.org/pdf/2408.05101).

### Training data

We utilize 5k hours of data (MT5K) to train our basic *MooER-5K* model. The data sources include:

| Dataset          | Duration          |
|---------------|---------------|
| aishell2 | 137h          |
| librispeech | 131h      |
| multi_cn | 100h          |

| wenetspeech  | 1361h     |

| in-house data | 3274h  |



Note that, data from the open-source datasets were randomly selected from the full training set. The in-house data, collected internally without text, were transcribed using a third-party ASR service.



Since all the above datasets were originally designed only for the speech recognition task, no translation results are available. To train our speech translation model, we used a third-party translation service to generate pseudo-labels. No data filtering techniques were applied.



At this moment, we are also developing a new model trained with 80K hours of data.



### Speech Recognition



The performance of speech recognition is evaluated using WER/CER.



<table>

  <tr>

    <th>Language</th>

    <th>Testset</th>

    <th>Paraformer-large</th>

    <th>SenseVoice-small</th>

    <th>Qwen-audio</th>

    <th>Whisper-large-v3</th>

    <th>SeamlessM4T-v2</th>

    <th>MooER-5K</th>

    <th>MooER-80K</th>

    <th>MooER-80K-v2</th>

  </tr>

  <tr>

    <td rowspan="7">Chinese</td>

    <td>aishell1</td>

    <td>1.93</td>

    <td>3.03</td>

    <td>1.43</td>

    <td>7.86</td>

    <td>4.09</td>

    <td>1.93</td>

    <td>1.25</td>

    <td>1.00</td>

  </tr>

  <tr>

    <td>aishell2_ios</td>
    <td>2.85</td>

    <td>3.79</td>

    <td>3.57</td>

    <td>5.38</td>

    <td>4.81</td>

    <td>3.17</td>

    <td>2.67</td>

    <td>2.62</td>

  </tr>

  <tr>

    <td>test_magicdata</td>

    <td>3.66</td>

    <td>3.81</td>

    <td>5.31</td>

    <td>8.36</td>

    <td>9.69</td>

    <td>3.48</td>

    <td>2.52</td>

    <td>2.17</td>

  </tr>

  <tr>

    <td>test_thchs</td>

    <td>3.99</td>

    <td>5.17</td>

    <td>4.86</td>

    <td>9.06</td>

    <td>7.14</td>

    <td>4.11</td>

    <td>3.14</td>

    <td>3.00</td>

  </tr>

  <tr>

    <td>fleurs cmn_dev</td>

    <td>5.56</td>

    <td>6.39</td>

    <td>10.54</td>

    <td>4.54</td>

    <td>7.12</td>

    <td>5.81</td>

    <td>5.23</td>

    <td>5.15</td>

  </tr>

  <tr>

    <td>fleurs cmn_test</td>

    <td>6.92</td>

    <td>7.36</td>

    <td>11.07</td>

    <td>5.24</td>

    <td>7.66</td>

    <td>6.77</td>

    <td>6.18</td>

    <td>6.14</td>

  </tr>

  <tr>

    <td>average</td>

    <td><strong>4.15</strong></td>

    <td><strong>4.93</strong></td>

    <td><strong>6.13</strong></td>

    <td><strong>6.74</strong></td>

    <td><strong>6.75</strong></td>

    <td><strong>4.21</strong></td>

    <td><strong>3.50</strong></td>

    <td><strong>3.35</strong></td>

  </tr>

  <tr>

    <td rowspan="7">English</td>

    <td>librispeech test_clean</td>

    <td>14.15</td>

    <td>4.07</td>

    <td>2.15</td>

    <td>3.42</td>

    <td>2.77</td>

    <td>7.78</td>

    <td>4.11</td>

    <td>3.57</td>

  </tr>

  <tr>

    <td>librispeech test_other</td>

    <td>22.99</td>

    <td>8.26</td>

    <td>4.68</td>

    <td>5.62</td>

    <td>5.25</td>

    <td>15.25</td>

    <td>9.99</td>

    <td>9.09</td>

  </tr>

  <tr>

    <td>fleurs eng_dev</td>

    <td>24.93</td>

    <td>12.92</td>

    <td>22.53</td>

    <td>11.63</td>

    <td>11.36</td>

    <td>18.89</td>

    <td>13.32</td>

    <td>13.12</td>

  </tr>

  <tr>

    <td>fleurs eng_test</td>

    <td>26.81</td>

    <td>13.41</td>

    <td>22.51</td>

    <td>12.57</td>

    <td>11.82</td>

    <td>20.41</td>

    <td>14.97</td>

    <td>14.74</td>

  </tr>

  <tr>

    <td>gigaspeech dev</td>

    <td>24.23</td>

    <td>19.44</td>

    <td>12.96</td>

    <td>19.18</td>

    <td>28.01</td>

    <td>23.46</td>

    <td>16.92</td>

    <td>17.34</td>

  </tr>

  <tr>

    <td>gigaspeech test</td>

    <td>23.07</td>

    <td>16.65</td>

    <td>13.26</td>

    <td>22.34</td>

    <td>28.65</td>

    <td>22.09</td>

    <td>16.64</td>

    <td>16.97</td>

  </tr>

  <tr>

    <td>average</td>

    <td><strong>22.70</strong></td>

    <td><strong>12.46</strong></td>

    <td><strong>13.02</strong></td>

    <td><strong>12.46</strong></td>

    <td><strong>14.64</strong></td>

    <td><strong>17.98</strong></td>

    <td><strong>12.66</strong></td>

    <td><strong>12.47</strong></td>

  </tr>

</table>


### Speech Translation (zh -> en)

For speech translation, the performanced is evaluated using BLEU score.

| Testset | Speech-LLaMA | Whisper-large-v3 | Qwen-audio | Qwen2-audio | SeamlessM4T-v2 | MooER-5K | MooER-5K-MTL |
|--------|-------------|-------------------|------------|-------------|-----------------|--------|--------------|
|CoVoST1 zh2en | - |  13.5 | 13.5 | - | 25.3 | - | **30.2** |
|CoVoST2 zh2en | 12.3 | 12.2 | 15.7 | 24.4 | 22.2 | 23.4 | **25.2** |
|CCMT2019 dev | -  | 15.9 | 12.0 | - | 14.8 | - | **19.6** |


## 🏁 Getting Started

Please visit our [GitHub](https://github.com/MooreThreads/MooER) for the setup and usage.


## 🧾 License

Please see the [LICENSE](LICENSE).


## πŸ’– Citation

If you find MooER useful for your research, please 🌟 this repo and cite our work using the following BibTeX:

```bibtex

@article{liang2024mooer,

  title   = {MooER: an LLM-based Speech Recognition and Translation Model from Moore Threads},

  author  = {Zhenlin Liang, Junhao Xu, Yi Liu, Yichao Hu, Jian Li, Yajun Zheng, Meng Cai, Hua Wang},

  journal = {arXiv preprint arXiv:2408.05101},

  url     = {https://arxiv.org/abs/2408.05101}, 

  year    = {2024}

}

```

## πŸ“§ Contact

If you encouter any problems, feel free to create a discussion.

Moore Threads Website: **https://www.mthreads.com/**

<br>
<p align="left">
    <img src="assets/MTLogo.png" width="300"/>

<p>

<br>