File size: 1,869 Bytes
fce27a5
 
 
 
a741391
fce27a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: apache-2.0
tags:
- generated_from_trainer
base_model: google/bert_uncased_L-4_H-512_A-8
model-index:
- name: bert_uncased_L-4_H-512_A-8-finetuned-eurlex-longer
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert_uncased_L-4_H-512_A-8-finetuned-eurlex-longer

This model is a fine-tuned version of [google/bert_uncased_L-4_H-512_A-8](https://huggingface.co/google/bert_uncased_L-4_H-512_A-8) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8229

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step  | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 1.0308        | 1.0   | 3913  | 0.9303          |
| 1.0053        | 2.0   | 7826  | 0.9066          |
| 0.9799        | 3.0   | 11739 | 0.8795          |
| 0.9575        | 4.0   | 15652 | 0.8677          |
| 0.9413        | 5.0   | 19565 | 0.8555          |
| 0.9319        | 6.0   | 23478 | 0.8447          |
| 0.9235        | 7.0   | 27391 | 0.8388          |
| 0.9132        | 8.0   | 31304 | 0.8345          |
| 0.9105        | 9.0   | 35217 | 0.8312          |
| 0.9154        | 10.0  | 39130 | 0.8229          |


### Framework versions

- Transformers 4.21.1
- Pytorch 1.12.1+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1