pawan2411 commited on
Commit
9fc379d
·
verified ·
1 Parent(s): eda4074

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,396 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:7851
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: microsoft/mpnet-base
10
+ widget:
11
+ - source_sentence: did I gain any profits over the past 10 days
12
+ sentences:
13
+ - Which stocks have a strong potential to see a 10% increase in the next 10 months?
14
+ - Did I make any money from trading in the last 10 days
15
+ - Which stocks have a strong potential to go up by 10% in the next 10 months?
16
+ - source_sentence: Can you show me my holdings?
17
+ sentences:
18
+ - Reveal my highest-risk assets
19
+ - Display my riskiest investment holdings
20
+ - 'I''d like to see my portfolio details '
21
+ - source_sentence: Do I have any stocks in my portfolio?
22
+ sentences:
23
+ - Are there any shares of stock included in my portfolio?
24
+ - Unfold my individualized fintech recommendations
25
+ - What's the numerical assessment of my portfolio?
26
+ - source_sentence: View my report card
27
+ sentences:
28
+ - Which sectors are the most attractive to investors in my portfolio
29
+ - Recalibrate portfolio from stocks to mutual fund holdings
30
+ - Get my account overview
31
+ - source_sentence: Which of my investments have the highest volatility?
32
+ sentences:
33
+ - Can I see a yearly analysis of my returns
34
+ - Have I committed resources to any equity-driven investment funds?
35
+ - Which of my assets show the most pronounced fluctuations in market value?
36
+ pipeline_tag: sentence-similarity
37
+ library_name: sentence-transformers
38
+ ---
39
+
40
+ # SentenceTransformer based on microsoft/mpnet-base
41
+
42
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** Sentence Transformer
48
+ - **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) <!-- at revision 6996ce1e91bd2a9c7d7f61daec37463394f73f09 -->
49
+ - **Maximum Sequence Length:** 512 tokens
50
+ - **Output Dimensionality:** 768 tokens
51
+ - **Similarity Function:** Cosine Similarity
52
+ <!-- - **Training Dataset:** Unknown -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
59
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
60
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
61
+
62
+ ### Full Model Architecture
63
+
64
+ ```
65
+ SentenceTransformer(
66
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
67
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
68
+ )
69
+ ```
70
+
71
+ ## Usage
72
+
73
+ ### Direct Usage (Sentence Transformers)
74
+
75
+ First install the Sentence Transformers library:
76
+
77
+ ```bash
78
+ pip install -U sentence-transformers
79
+ ```
80
+
81
+ Then you can load this model and run inference.
82
+ ```python
83
+ from sentence_transformers import SentenceTransformer
84
+
85
+ # Download from the 🤗 Hub
86
+ model = SentenceTransformer("pawan2411/semantic-embedding_2")
87
+ # Run inference
88
+ sentences = [
89
+ 'Which of my investments have the highest volatility?',
90
+ 'Which of my assets show the most pronounced fluctuations in market value?',
91
+ 'Can I see a yearly analysis of my returns',
92
+ ]
93
+ embeddings = model.encode(sentences)
94
+ print(embeddings.shape)
95
+ # [3, 768]
96
+
97
+ # Get the similarity scores for the embeddings
98
+ similarities = model.similarity(embeddings, embeddings)
99
+ print(similarities.shape)
100
+ # [3, 3]
101
+ ```
102
+
103
+ <!--
104
+ ### Direct Usage (Transformers)
105
+
106
+ <details><summary>Click to see the direct usage in Transformers</summary>
107
+
108
+ </details>
109
+ -->
110
+
111
+ <!--
112
+ ### Downstream Usage (Sentence Transformers)
113
+
114
+ You can finetune this model on your own dataset.
115
+
116
+ <details><summary>Click to expand</summary>
117
+
118
+ </details>
119
+ -->
120
+
121
+ <!--
122
+ ### Out-of-Scope Use
123
+
124
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
125
+ -->
126
+
127
+ <!--
128
+ ## Bias, Risks and Limitations
129
+
130
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
131
+ -->
132
+
133
+ <!--
134
+ ### Recommendations
135
+
136
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
137
+ -->
138
+
139
+ ## Training Details
140
+
141
+ ### Training Dataset
142
+
143
+ #### Unnamed Dataset
144
+
145
+
146
+ * Size: 7,851 training samples
147
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
148
+ * Approximate statistics based on the first 1000 samples:
149
+ | | sentence_0 | sentence_1 |
150
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
151
+ | type | string | string |
152
+ | details | <ul><li>min: 5 tokens</li><li>mean: 9.57 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 12.07 tokens</li><li>max: 27 tokens</li></ul> |
153
+ * Samples:
154
+ | sentence_0 | sentence_1 |
155
+ |:----------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|
156
+ | <code>Show me how to switch my stock portfolio to mutual funds</code> | <code>What steps should I take to replace my stock holdings with mutual fund investments?</code> |
157
+ | <code>View my holdings</code> | <code>See my investment portfolio</code> |
158
+ | <code>How did my portfolio perform last week ?</code> | <code>Can you give me a rundown of my portfolio's performance for the past week?</code> |
159
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
160
+ ```json
161
+ {
162
+ "scale": 20.0,
163
+ "similarity_fct": "cos_sim"
164
+ }
165
+ ```
166
+
167
+ ### Training Hyperparameters
168
+ #### Non-Default Hyperparameters
169
+
170
+ - `per_device_train_batch_size`: 64
171
+ - `per_device_eval_batch_size`: 64
172
+ - `num_train_epochs`: 50
173
+ - `multi_dataset_batch_sampler`: round_robin
174
+
175
+ #### All Hyperparameters
176
+ <details><summary>Click to expand</summary>
177
+
178
+ - `overwrite_output_dir`: False
179
+ - `do_predict`: False
180
+ - `eval_strategy`: no
181
+ - `prediction_loss_only`: True
182
+ - `per_device_train_batch_size`: 64
183
+ - `per_device_eval_batch_size`: 64
184
+ - `per_gpu_train_batch_size`: None
185
+ - `per_gpu_eval_batch_size`: None
186
+ - `gradient_accumulation_steps`: 1
187
+ - `eval_accumulation_steps`: None
188
+ - `torch_empty_cache_steps`: None
189
+ - `learning_rate`: 5e-05
190
+ - `weight_decay`: 0.0
191
+ - `adam_beta1`: 0.9
192
+ - `adam_beta2`: 0.999
193
+ - `adam_epsilon`: 1e-08
194
+ - `max_grad_norm`: 1
195
+ - `num_train_epochs`: 50
196
+ - `max_steps`: -1
197
+ - `lr_scheduler_type`: linear
198
+ - `lr_scheduler_kwargs`: {}
199
+ - `warmup_ratio`: 0.0
200
+ - `warmup_steps`: 0
201
+ - `log_level`: passive
202
+ - `log_level_replica`: warning
203
+ - `log_on_each_node`: True
204
+ - `logging_nan_inf_filter`: True
205
+ - `save_safetensors`: True
206
+ - `save_on_each_node`: False
207
+ - `save_only_model`: False
208
+ - `restore_callback_states_from_checkpoint`: False
209
+ - `no_cuda`: False
210
+ - `use_cpu`: False
211
+ - `use_mps_device`: False
212
+ - `seed`: 42
213
+ - `data_seed`: None
214
+ - `jit_mode_eval`: False
215
+ - `use_ipex`: False
216
+ - `bf16`: False
217
+ - `fp16`: False
218
+ - `fp16_opt_level`: O1
219
+ - `half_precision_backend`: auto
220
+ - `bf16_full_eval`: False
221
+ - `fp16_full_eval`: False
222
+ - `tf32`: None
223
+ - `local_rank`: 0
224
+ - `ddp_backend`: None
225
+ - `tpu_num_cores`: None
226
+ - `tpu_metrics_debug`: False
227
+ - `debug`: []
228
+ - `dataloader_drop_last`: False
229
+ - `dataloader_num_workers`: 0
230
+ - `dataloader_prefetch_factor`: None
231
+ - `past_index`: -1
232
+ - `disable_tqdm`: False
233
+ - `remove_unused_columns`: True
234
+ - `label_names`: None
235
+ - `load_best_model_at_end`: False
236
+ - `ignore_data_skip`: False
237
+ - `fsdp`: []
238
+ - `fsdp_min_num_params`: 0
239
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
240
+ - `fsdp_transformer_layer_cls_to_wrap`: None
241
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
242
+ - `deepspeed`: None
243
+ - `label_smoothing_factor`: 0.0
244
+ - `optim`: adamw_torch
245
+ - `optim_args`: None
246
+ - `adafactor`: False
247
+ - `group_by_length`: False
248
+ - `length_column_name`: length
249
+ - `ddp_find_unused_parameters`: None
250
+ - `ddp_bucket_cap_mb`: None
251
+ - `ddp_broadcast_buffers`: False
252
+ - `dataloader_pin_memory`: True
253
+ - `dataloader_persistent_workers`: False
254
+ - `skip_memory_metrics`: True
255
+ - `use_legacy_prediction_loop`: False
256
+ - `push_to_hub`: False
257
+ - `resume_from_checkpoint`: None
258
+ - `hub_model_id`: None
259
+ - `hub_strategy`: every_save
260
+ - `hub_private_repo`: False
261
+ - `hub_always_push`: False
262
+ - `gradient_checkpointing`: False
263
+ - `gradient_checkpointing_kwargs`: None
264
+ - `include_inputs_for_metrics`: False
265
+ - `eval_do_concat_batches`: True
266
+ - `fp16_backend`: auto
267
+ - `push_to_hub_model_id`: None
268
+ - `push_to_hub_organization`: None
269
+ - `mp_parameters`:
270
+ - `auto_find_batch_size`: False
271
+ - `full_determinism`: False
272
+ - `torchdynamo`: None
273
+ - `ray_scope`: last
274
+ - `ddp_timeout`: 1800
275
+ - `torch_compile`: False
276
+ - `torch_compile_backend`: None
277
+ - `torch_compile_mode`: None
278
+ - `dispatch_batches`: None
279
+ - `split_batches`: None
280
+ - `include_tokens_per_second`: False
281
+ - `include_num_input_tokens_seen`: False
282
+ - `neftune_noise_alpha`: None
283
+ - `optim_target_modules`: None
284
+ - `batch_eval_metrics`: False
285
+ - `eval_on_start`: False
286
+ - `use_liger_kernel`: False
287
+ - `eval_use_gather_object`: False
288
+ - `batch_sampler`: batch_sampler
289
+ - `multi_dataset_batch_sampler`: round_robin
290
+
291
+ </details>
292
+
293
+ ### Training Logs
294
+ | Epoch | Step | Training Loss |
295
+ |:--------:|:-----:|:-------------:|
296
+ | 4.0650 | 500 | 2.1067 |
297
+ | 8.1301 | 1000 | 0.8233 |
298
+ | 12.1951 | 1500 | 0.6455 |
299
+ | 16.2602 | 2000 | 0.5768 |
300
+ | 20.3252 | 2500 | 0.5378 |
301
+ | 24.3902 | 3000 | 0.5155 |
302
+ | 28.4553 | 3500 | 0.499 |
303
+ | 32.5203 | 4000 | 0.4906 |
304
+ | 36.5854 | 4500 | 0.4841 |
305
+ | 40.6504 | 5000 | 0.4801 |
306
+ | 44.7154 | 5500 | 0.4746 |
307
+ | 48.7805 | 6000 | 0.4718 |
308
+ | 52.8455 | 6500 | 0.47 |
309
+ | 56.9106 | 7000 | 0.468 |
310
+ | 60.9756 | 7500 | 0.4655 |
311
+ | 65.0407 | 8000 | 0.4634 |
312
+ | 69.1057 | 8500 | 0.462 |
313
+ | 73.1707 | 9000 | 0.4604 |
314
+ | 77.2358 | 9500 | 0.46 |
315
+ | 81.3008 | 10000 | 0.4598 |
316
+ | 85.3659 | 10500 | 0.458 |
317
+ | 89.4309 | 11000 | 0.4574 |
318
+ | 93.4959 | 11500 | 0.4566 |
319
+ | 97.5610 | 12000 | 0.4565 |
320
+ | 101.6260 | 12500 | 0.4558 |
321
+ | 105.6911 | 13000 | 0.455 |
322
+ | 109.7561 | 13500 | 0.4551 |
323
+ | 113.8211 | 14000 | 0.455 |
324
+ | 117.8862 | 14500 | 0.4544 |
325
+ | 121.9512 | 15000 | 0.4533 |
326
+ | 126.0163 | 15500 | 0.4543 |
327
+ | 130.0813 | 16000 | 0.4535 |
328
+ | 134.1463 | 16500 | 0.4532 |
329
+ | 138.2114 | 17000 | 0.4522 |
330
+ | 142.2764 | 17500 | 0.4536 |
331
+ | 146.3415 | 18000 | 0.4521 |
332
+ | 4.0650 | 500 | 0.4898 |
333
+ | 8.1301 | 1000 | 0.4737 |
334
+ | 12.1951 | 1500 | 0.4681 |
335
+ | 16.2602 | 2000 | 0.4669 |
336
+ | 20.3252 | 2500 | 0.4645 |
337
+ | 24.3902 | 3000 | 0.4626 |
338
+ | 28.4553 | 3500 | 0.4586 |
339
+ | 32.5203 | 4000 | 0.4568 |
340
+
341
+
342
+ ### Framework Versions
343
+ - Python: 3.10.12
344
+ - Sentence Transformers: 3.1.1
345
+ - Transformers: 4.45.2
346
+ - PyTorch: 2.5.1+cu121
347
+ - Accelerate: 1.1.1
348
+ - Datasets: 3.1.0
349
+ - Tokenizers: 0.20.3
350
+
351
+ ## Citation
352
+
353
+ ### BibTeX
354
+
355
+ #### Sentence Transformers
356
+ ```bibtex
357
+ @inproceedings{reimers-2019-sentence-bert,
358
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
359
+ author = "Reimers, Nils and Gurevych, Iryna",
360
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
361
+ month = "11",
362
+ year = "2019",
363
+ publisher = "Association for Computational Linguistics",
364
+ url = "https://arxiv.org/abs/1908.10084",
365
+ }
366
+ ```
367
+
368
+ #### MultipleNegativesRankingLoss
369
+ ```bibtex
370
+ @misc{henderson2017efficient,
371
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
372
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
373
+ year={2017},
374
+ eprint={1705.00652},
375
+ archivePrefix={arXiv},
376
+ primaryClass={cs.CL}
377
+ }
378
+ ```
379
+
380
+ <!--
381
+ ## Glossary
382
+
383
+ *Clearly define terms in order to be accessible across audiences.*
384
+ -->
385
+
386
+ <!--
387
+ ## Model Card Authors
388
+
389
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
390
+ -->
391
+
392
+ <!--
393
+ ## Model Card Contact
394
+
395
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
396
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/mpnet-base",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.45.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.45.2",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a843682f0132df39a800c5fe2293745ab3171466731dfb4cadbe723ea6518bb
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": false,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "mask_token": "<mask>",
58
+ "model_max_length": 512,
59
+ "pad_token": "<pad>",
60
+ "sep_token": "</s>",
61
+ "strip_accents": null,
62
+ "tokenize_chinese_chars": true,
63
+ "tokenizer_class": "MPNetTokenizer",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff