zhiqu22
commited on
Commit
·
0517e25
1
Parent(s):
4b2109e
update codes
Browse files- configuration_mitre.py +63 -0
- mitre_spm.model +3 -0
- modeling_mitre.py +841 -0
- tokenization_mitre.py +211 -0
- tokenizer_config.json +15 -0
- vocab.json +0 -0
configuration_mitre.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
"""Mitre model configuration"""
|
3 |
+
|
4 |
+
from transformers.configuration_utils import PretrainedConfig
|
5 |
+
from transformers.utils import logging
|
6 |
+
|
7 |
+
|
8 |
+
logger = logging.get_logger(__name__)
|
9 |
+
|
10 |
+
class MitreConfig(PretrainedConfig):
|
11 |
+
model_type = "mitre"
|
12 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
13 |
+
attribute_map = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"}
|
14 |
+
|
15 |
+
def __init__(
|
16 |
+
self,
|
17 |
+
vocab_size=160025,
|
18 |
+
max_position_embeddings=256,
|
19 |
+
decoder_layers=24,
|
20 |
+
decoder_ffn_dim=4096,
|
21 |
+
decoder_attention_heads=16,
|
22 |
+
use_cache=True,
|
23 |
+
is_encoder_decoder=False,
|
24 |
+
activation_function="relu",
|
25 |
+
d_model=1024,
|
26 |
+
dropout=0.1,
|
27 |
+
attention_dropout=0.1,
|
28 |
+
activation_dropout=0.0,
|
29 |
+
init_std=0.02,
|
30 |
+
decoder_start_token_id=2,
|
31 |
+
scale_embedding=True,
|
32 |
+
pad_token_id=1,
|
33 |
+
bos_token_id=0,
|
34 |
+
eos_token_id=2,
|
35 |
+
**kwargs,
|
36 |
+
):
|
37 |
+
self.vocab_size = vocab_size
|
38 |
+
self.max_position_embeddings = max_position_embeddings
|
39 |
+
self.d_model = d_model
|
40 |
+
self.decoder_ffn_dim = decoder_ffn_dim
|
41 |
+
self.decoder_layers = decoder_layers
|
42 |
+
self.decoder_attention_heads = decoder_attention_heads
|
43 |
+
self.dropout = dropout
|
44 |
+
self.attention_dropout = attention_dropout
|
45 |
+
self.activation_dropout = activation_dropout
|
46 |
+
self.activation_function = activation_function
|
47 |
+
self.init_std = init_std
|
48 |
+
self.use_cache = use_cache
|
49 |
+
self.num_hidden_layers = decoder_layers
|
50 |
+
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
|
51 |
+
self.is_decoder = True
|
52 |
+
self.is_encoder_decoder = False
|
53 |
+
|
54 |
+
super().__init__(
|
55 |
+
pad_token_id=pad_token_id,
|
56 |
+
bos_token_id=bos_token_id,
|
57 |
+
eos_token_id=eos_token_id,
|
58 |
+
is_encoder_decoder=is_encoder_decoder,
|
59 |
+
decoder_start_token_id=decoder_start_token_id,
|
60 |
+
**kwargs,
|
61 |
+
)
|
62 |
+
|
63 |
+
MitreConfig.register_for_auto_class("AutoConfig")
|
mitre_spm.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c7d00755ffecaf04eec1af3b31bb5a1bdb79e93cda9ff44ec1ee08656f6bfd84
|
3 |
+
size 3158318
|
modeling_mitre.py
ADDED
@@ -0,0 +1,841 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
|
3 |
+
import math
|
4 |
+
from typing import List, Optional, Tuple, Union, Dict, Any
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from torch import nn
|
8 |
+
from .configuration_mitre import MitreConfig
|
9 |
+
from transformers.utils import logging
|
10 |
+
|
11 |
+
from transformers.generation import GenerationMixin
|
12 |
+
from transformers.modeling_utils import PreTrainedModel
|
13 |
+
from transformers.activations import ACT2FN
|
14 |
+
from transformers.integrations.deepspeed import is_deepspeed_zero3_enabled
|
15 |
+
from transformers.integrations.fsdp import is_fsdp_managed_module
|
16 |
+
from transformers.modeling_outputs import (
|
17 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
18 |
+
Seq2SeqLMOutput,
|
19 |
+
Seq2SeqModelOutput,
|
20 |
+
)
|
21 |
+
from transformers.generation.configuration_utils import GenerationConfig
|
22 |
+
from transformers.generation.beam_search import BeamSearchScorer
|
23 |
+
from transformers.generation.logits_process import LogitsProcessorList
|
24 |
+
from transformers.generation.stopping_criteria import StoppingCriteriaList
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
|
29 |
+
"""
|
30 |
+
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
|
31 |
+
are ignored. This is modified from fairseq's `utils.make_positions`.
|
32 |
+
"""
|
33 |
+
mask = input_ids.ne(padding_idx).int()
|
34 |
+
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
|
35 |
+
return incremental_indices.long() + padding_idx
|
36 |
+
|
37 |
+
|
38 |
+
# Modified from transformers.models.m2m_100.modeling_m2m_100.M2M100Attention
|
39 |
+
# and transformers.models.m2m_100.modeling_m2m_100.M2M100SdpaAttention
|
40 |
+
class MitreSdpaAttention(nn.Module):
|
41 |
+
|
42 |
+
def __init__(
|
43 |
+
self,
|
44 |
+
embed_dim: int,
|
45 |
+
num_heads: int,
|
46 |
+
dropout: float = 0.0,
|
47 |
+
bias: bool = True,
|
48 |
+
config: Optional[MitreConfig] = None,
|
49 |
+
):
|
50 |
+
super().__init__()
|
51 |
+
self.embed_dim = embed_dim
|
52 |
+
self.num_heads = num_heads
|
53 |
+
self.dropout = dropout
|
54 |
+
self.head_dim = embed_dim // num_heads
|
55 |
+
self.config = config
|
56 |
+
|
57 |
+
if (self.head_dim * num_heads) != self.embed_dim:
|
58 |
+
raise ValueError(
|
59 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
|
60 |
+
f" and `num_heads`: {num_heads})."
|
61 |
+
)
|
62 |
+
self.scaling = self.head_dim**-0.5
|
63 |
+
|
64 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
65 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
66 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
67 |
+
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
68 |
+
|
69 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
70 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
71 |
+
|
72 |
+
def forward(
|
73 |
+
self,
|
74 |
+
hidden_states: torch.Tensor,
|
75 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
76 |
+
attention_mask: Optional[torch.Tensor] = None,
|
77 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
78 |
+
"""
|
79 |
+
Input shape: Batch x Time x Channel
|
80 |
+
Output objects: attn_output, attn_weights (always be None), past_key_value
|
81 |
+
"""
|
82 |
+
"""
|
83 |
+
1. MitreModel is using MitreSdpaAttention, which is modifed from M2M100SdpaAttention.
|
84 |
+
Notabley, both of them do not support `output_attentions=True` or `layer_head_mask` not None,
|
85 |
+
leading to 'attn_weights' always being None in output.
|
86 |
+
The plan of improving this point has a low priority.
|
87 |
+
2. We plan to improve this code with Flash Attention v2.
|
88 |
+
"""
|
89 |
+
bsz, tgt_len, _ = hidden_states.size()
|
90 |
+
|
91 |
+
# get query proj
|
92 |
+
query_states = self.q_proj(hidden_states)
|
93 |
+
if past_key_value is not None:
|
94 |
+
# reuse k, v, self_attention
|
95 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
96 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
97 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
98 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
99 |
+
else:
|
100 |
+
# self_attention
|
101 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
102 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
103 |
+
|
104 |
+
past_key_value = (key_states, value_states)
|
105 |
+
|
106 |
+
query_states = self._shape(query_states, tgt_len, bsz)
|
107 |
+
|
108 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
109 |
+
query_states,
|
110 |
+
key_states,
|
111 |
+
value_states,
|
112 |
+
attn_mask=attention_mask,
|
113 |
+
dropout_p=self.dropout if self.training else 0.0,
|
114 |
+
is_causal=False,
|
115 |
+
)
|
116 |
+
|
117 |
+
if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim):
|
118 |
+
raise ValueError(
|
119 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
120 |
+
f" {attn_output.size()}"
|
121 |
+
)
|
122 |
+
|
123 |
+
attn_output = attn_output.transpose(1, 2)
|
124 |
+
|
125 |
+
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
|
126 |
+
# partitioned across GPUs when using tensor-parallelism.
|
127 |
+
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
|
128 |
+
|
129 |
+
attn_output = self.out_proj(attn_output)
|
130 |
+
|
131 |
+
return attn_output, None, past_key_value
|
132 |
+
|
133 |
+
|
134 |
+
# Modified from transformers.models.m2m_100.modeling_m2m100.M2M100DecoderLayer
|
135 |
+
class MitreDecoderLayer(nn.Module):
|
136 |
+
def __init__(self, config: MitreConfig):
|
137 |
+
super().__init__()
|
138 |
+
self.embed_dim = config.d_model
|
139 |
+
|
140 |
+
self.self_attn = MitreSdpaAttention(
|
141 |
+
embed_dim=self.embed_dim,
|
142 |
+
num_heads=config.decoder_attention_heads,
|
143 |
+
dropout=config.attention_dropout,
|
144 |
+
config=config,
|
145 |
+
)
|
146 |
+
self.dropout = config.dropout
|
147 |
+
self.activation_fn = ACT2FN[config.activation_function]
|
148 |
+
self.activation_dropout = config.activation_dropout
|
149 |
+
|
150 |
+
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
151 |
+
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
|
152 |
+
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
|
153 |
+
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
|
154 |
+
|
155 |
+
def forward(
|
156 |
+
self,
|
157 |
+
hidden_states: torch.Tensor,
|
158 |
+
attention_mask: Optional[torch.Tensor] = None,
|
159 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
160 |
+
use_cache: Optional[bool] = True,
|
161 |
+
) -> torch.Tensor:
|
162 |
+
"""
|
163 |
+
Args:
|
164 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
165 |
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
166 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
167 |
+
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
|
168 |
+
"""
|
169 |
+
residual = hidden_states
|
170 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
171 |
+
|
172 |
+
# Self Attention
|
173 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
174 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
175 |
+
# add present self-attn cache to positions 1,2 of present_key_value tuple
|
176 |
+
hidden_states, _, present_key_value = self.self_attn(
|
177 |
+
hidden_states=hidden_states,
|
178 |
+
past_key_value=self_attn_past_key_value,
|
179 |
+
attention_mask=attention_mask,
|
180 |
+
)
|
181 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
182 |
+
hidden_states = residual + hidden_states
|
183 |
+
|
184 |
+
# Fully Connected
|
185 |
+
residual = hidden_states
|
186 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
187 |
+
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
188 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
|
189 |
+
hidden_states = self.fc2(hidden_states)
|
190 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
191 |
+
hidden_states = residual + hidden_states
|
192 |
+
|
193 |
+
outputs = (hidden_states,)
|
194 |
+
|
195 |
+
if use_cache:
|
196 |
+
outputs += (present_key_value,)
|
197 |
+
|
198 |
+
return outputs
|
199 |
+
|
200 |
+
|
201 |
+
class MitrePreTrainedModel(PreTrainedModel):
|
202 |
+
config_class = MitreConfig
|
203 |
+
base_model_prefix = "model"
|
204 |
+
supports_gradient_checkpointing = True
|
205 |
+
_no_split_modules = ["MitreDecoderLayer"]
|
206 |
+
# we plan to implement codes for falsh attention v2
|
207 |
+
_supports_flash_attn_2 = False
|
208 |
+
_supports_sdpa = True
|
209 |
+
|
210 |
+
def _init_weights(self, module):
|
211 |
+
std = self.config.init_std
|
212 |
+
if isinstance(module, nn.Linear):
|
213 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
214 |
+
if module.bias is not None:
|
215 |
+
module.bias.data.zero_()
|
216 |
+
elif isinstance(module, nn.Embedding):
|
217 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
218 |
+
if module.padding_idx is not None:
|
219 |
+
module.weight.data[module.padding_idx].zero_()
|
220 |
+
|
221 |
+
|
222 |
+
class MitreDecoder(MitrePreTrainedModel):
|
223 |
+
"""
|
224 |
+
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`MitreDecoderLayer`]
|
225 |
+
|
226 |
+
Args:
|
227 |
+
config: MitreConfig
|
228 |
+
embed_tokens (nn.Embedding): output embedding
|
229 |
+
"""
|
230 |
+
|
231 |
+
def __init__(self, config: MitreConfig):
|
232 |
+
super().__init__(config)
|
233 |
+
self.dropout = config.dropout
|
234 |
+
self.padding_idx = config.pad_token_id
|
235 |
+
self.max_target_positions = config.max_position_embeddings
|
236 |
+
embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
|
237 |
+
|
238 |
+
self.embed_tokens = MitreScaledWordEmbedding(
|
239 |
+
config.vocab_size, config.d_model, self.padding_idx, embed_scale=embed_scale
|
240 |
+
)
|
241 |
+
|
242 |
+
self.src_embed_positions = MitreSinusoidalPositionalEmbedding(
|
243 |
+
config.max_position_embeddings,
|
244 |
+
config.d_model,
|
245 |
+
self.padding_idx,
|
246 |
+
)
|
247 |
+
self.register_embed_positions = MitreSinusoidalPositionalEmbedding(
|
248 |
+
config.max_position_embeddings,
|
249 |
+
config.d_model,
|
250 |
+
self.padding_idx,
|
251 |
+
)
|
252 |
+
self.tgt_embed_positions = MitreSinusoidalPositionalEmbedding(
|
253 |
+
config.max_position_embeddings,
|
254 |
+
config.d_model,
|
255 |
+
self.padding_idx,
|
256 |
+
)
|
257 |
+
self.layers = nn.ModuleList([MitreDecoderLayer(config) for _ in range(config.decoder_layers)])
|
258 |
+
if config._attn_implementation != "sdpa":
|
259 |
+
raise NotImplementedError("Other attention mechanism are not implemented yet.")
|
260 |
+
|
261 |
+
# TODO implement flash atten v2 for MITRE
|
262 |
+
# self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
263 |
+
self._use_sdpa = config._attn_implementation == "sdpa"
|
264 |
+
self.layer_norm = nn.LayerNorm(config.d_model)
|
265 |
+
|
266 |
+
self.gradient_checkpointing = False
|
267 |
+
self._future_mask = torch.empty(0)
|
268 |
+
# Initialize weights and apply final processing
|
269 |
+
self.post_init()
|
270 |
+
|
271 |
+
def create_registers(self, input_ids):
|
272 |
+
'''
|
273 |
+
create registers by duplicating the language tag respective to each sentence.
|
274 |
+
length(registers) = length(real_tokens) = length(tokens) - length(pads)
|
275 |
+
'''
|
276 |
+
register_nums = (~input_ids.eq(self.padding_idx)).sum(dim=1)
|
277 |
+
max_register_nums = register_nums.max().item()
|
278 |
+
total_token_nums = input_ids.size(1) + max_register_nums
|
279 |
+
batch_size = input_ids.size(0)
|
280 |
+
registers = input_ids[range(batch_size), torch.argmax(input_ids, dim=-1)].unsqueeze(1).repeat(1, max_register_nums)
|
281 |
+
return registers, register_nums, total_token_nums
|
282 |
+
|
283 |
+
def combine_src_and_registers(self, input_ids, registers, register_nums, total_token_nums):
|
284 |
+
'''
|
285 |
+
return a expanded_src_tokens for positional embedding.
|
286 |
+
'''
|
287 |
+
pads = torch.full_like(registers, self.padding_idx)
|
288 |
+
expanded_src_tokens = torch.cat((pads, input_ids, registers), dim=1)
|
289 |
+
indices = torch.arange(total_token_nums).expand(input_ids.size(0), -1).to(input_ids.device)
|
290 |
+
indices = indices + register_nums.unsqueeze(1)
|
291 |
+
|
292 |
+
batch_indices = torch.arange(input_ids.shape[0]).unsqueeze(1).expand(-1, indices.size(1)).contiguous()
|
293 |
+
return expanded_src_tokens, batch_indices, indices
|
294 |
+
|
295 |
+
def fill_with_neg_inf(self, t):
|
296 |
+
return t.float().fill_(float("-inf")).type_as(t)
|
297 |
+
|
298 |
+
def build_future_mask(self, embeds, src_length, register_nums, padding_mask=None, past_key_values_length=0):
|
299 |
+
b = register_nums.size(0)
|
300 |
+
ns = src_length - register_nums
|
301 |
+
if past_key_values_length == 0:
|
302 |
+
# in training
|
303 |
+
# 1. create mask by cache
|
304 |
+
dim = embeds.size(1)
|
305 |
+
if (
|
306 |
+
self._future_mask.size(0) == 0
|
307 |
+
or self._future_mask.size(0) < dim
|
308 |
+
):
|
309 |
+
self._future_mask = torch.triu(self.fill_with_neg_inf(torch.zeros([dim, dim])), 1)
|
310 |
+
if self._future_mask.device == embeds.device:
|
311 |
+
mask = self._future_mask[:dim, :dim].clone()
|
312 |
+
else:
|
313 |
+
mask = self._future_mask[:dim, :dim].to(embeds, copy=True)
|
314 |
+
|
315 |
+
# 2. bi-directional attention in source tokens and registers
|
316 |
+
mask[ :src_length, :src_length] = 0.
|
317 |
+
|
318 |
+
# 3. create batch mask
|
319 |
+
batch_mask = mask.unsqueeze(0).expand(b, -1, -1).clone().contiguous()
|
320 |
+
|
321 |
+
# 4. mask source tokens -> registers
|
322 |
+
# 5. mask target -> source tokens
|
323 |
+
batch_indices = torch.arange(b).to(batch_mask.device).view(-1, 1, 1).expand(b, dim, dim).contiguous()
|
324 |
+
row_indices = torch.arange(dim).to(batch_mask.device).view(1, -1, 1).expand(b, dim, dim).contiguous()
|
325 |
+
col_indices = torch.arange(dim).to(batch_mask.device).view(1, 1, -1).expand(b, dim, dim).contiguous()
|
326 |
+
source_indices = (row_indices < ns.view(-1, 1, 1)) & (col_indices >= ns.view(-1, 1, 1)) & (col_indices < (ns + register_nums).view(-1, 1, 1)).contiguous()
|
327 |
+
target_indices = (row_indices >= (ns + register_nums).view(-1, 1, 1)) & (col_indices < ns.view(-1, 1, 1)).contiguous()
|
328 |
+
# 4
|
329 |
+
batch_mask[batch_indices[source_indices], row_indices[source_indices], col_indices[source_indices]] = float('-inf')
|
330 |
+
# 5
|
331 |
+
batch_mask[batch_indices[target_indices], row_indices[target_indices], col_indices[target_indices]] = float('-inf')
|
332 |
+
# shape: batch_size, head_num (1 for broadcasting), seq_len, seq_len
|
333 |
+
batch_mask = batch_mask.unsqueeze(1)
|
334 |
+
# 6. masking pads
|
335 |
+
if padding_mask is not None:
|
336 |
+
if padding_mask.any():
|
337 |
+
padding_mask = padding_mask.to(batch_mask.device).unsqueeze(1).unsqueeze(2)
|
338 |
+
batch_mask = batch_mask.masked_fill(padding_mask == 1, float('-inf'))
|
339 |
+
|
340 |
+
elif past_key_values_length > 0:
|
341 |
+
# in generation
|
342 |
+
mask = torch.zeros(past_key_values_length + 1)
|
343 |
+
mask = mask.to(embeds, copy=True)
|
344 |
+
batch_mask = mask.unsqueeze(0).expand(b, -1).clone().contiguous()
|
345 |
+
|
346 |
+
batch_indices = torch.arange(b).view(-1, 1).expand(b, past_key_values_length + 1).to(batch_mask.device)
|
347 |
+
token_indices = torch.arange(past_key_values_length + 1).view(1, -1).expand(b, past_key_values_length + 1).to(batch_mask.device)
|
348 |
+
target_to_source_mask = token_indices < ns.view(-1, 1)
|
349 |
+
|
350 |
+
batch_mask[batch_indices[target_to_source_mask], token_indices[target_to_source_mask]] = float('-inf')
|
351 |
+
batch_mask = batch_mask.unsqueeze(1)
|
352 |
+
|
353 |
+
# ensure contiguous
|
354 |
+
batch_mask = batch_mask.view(b, 1, batch_mask.shape[-2], batch_mask.shape[-1])
|
355 |
+
return batch_mask
|
356 |
+
|
357 |
+
|
358 |
+
def forward(
|
359 |
+
self,
|
360 |
+
input_ids: Optional[torch.Tensor] = None,
|
361 |
+
decoder_input_ids: Optional[torch.Tensor] = None,
|
362 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
363 |
+
use_cache: Optional[bool] = None,
|
364 |
+
output_attentions: Optional[bool] = None,
|
365 |
+
output_hidden_states: Optional[bool] = None,
|
366 |
+
registering_cache: dict = None,
|
367 |
+
):
|
368 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
369 |
+
output_hidden_states = (
|
370 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
371 |
+
)
|
372 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
373 |
+
|
374 |
+
# past_key_values_length
|
375 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
376 |
+
|
377 |
+
decoder_input_shape = decoder_input_ids.size()
|
378 |
+
decoder_input_ids = decoder_input_ids.view(-1, decoder_input_shape[-1])
|
379 |
+
padding_mask = None
|
380 |
+
|
381 |
+
if past_key_values_length > 0:
|
382 |
+
register_nums = registering_cache["register_nums"]
|
383 |
+
src_length = registering_cache["src_length"]
|
384 |
+
|
385 |
+
if input_ids is not None and past_key_values_length == 0:
|
386 |
+
# .view() additionally ensure that the memory is contiguous
|
387 |
+
input_shape = input_ids.size()
|
388 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
389 |
+
|
390 |
+
registers, register_nums, total_token_nums = self.create_registers(input_ids)
|
391 |
+
expanded_src_tokens, batch_indices, indices = self.combine_src_and_registers(input_ids, registers, register_nums, total_token_nums)
|
392 |
+
|
393 |
+
# positional embedding for source tokens and registers
|
394 |
+
inputs_embeds = self.embed_tokens(expanded_src_tokens)
|
395 |
+
inputs_embeds_1 = inputs_embeds[:,:total_token_nums,:] + self.src_embed_positions(expanded_src_tokens[:,:total_token_nums])
|
396 |
+
inputs_embeds_2 = inputs_embeds[:,total_token_nums:,:] + self.register_embed_positions(expanded_src_tokens[:,total_token_nums:])
|
397 |
+
inputs_embeds = torch.cat((inputs_embeds_1, inputs_embeds_2), dim=1)
|
398 |
+
inputs_embeds = inputs_embeds[batch_indices, indices]
|
399 |
+
|
400 |
+
|
401 |
+
# padding mask
|
402 |
+
source_tokens = expanded_src_tokens[batch_indices, indices]
|
403 |
+
src_length = source_tokens.shape[1]
|
404 |
+
|
405 |
+
# replace the inference trigger with langtok
|
406 |
+
# namely, enc-tgt-dec-tgt strategy
|
407 |
+
if decoder_input_ids[0][0].item() != source_tokens[0][-1].item():
|
408 |
+
decoder_input_ids[:, 0] = source_tokens[:, -1]
|
409 |
+
|
410 |
+
tokens = torch.cat([source_tokens, decoder_input_ids], dim=1)
|
411 |
+
padding_mask = tokens.eq(self.padding_idx)
|
412 |
+
|
413 |
+
decoder_inputs_embeds = self.embed_tokens(decoder_input_ids)
|
414 |
+
decoder_inputs_embeds = decoder_inputs_embeds + self.tgt_embed_positions(decoder_input_ids, past_key_values_length, src_length=src_length)
|
415 |
+
if past_key_values_length == 0:
|
416 |
+
hidden_states = torch.cat([inputs_embeds, decoder_inputs_embeds], dim=1)
|
417 |
+
else:
|
418 |
+
hidden_states = decoder_inputs_embeds
|
419 |
+
|
420 |
+
attention_mask = self.build_future_mask(hidden_states, src_length, register_nums, padding_mask, past_key_values_length)
|
421 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
422 |
+
|
423 |
+
if self.gradient_checkpointing and self.training:
|
424 |
+
if use_cache:
|
425 |
+
logger.warning_once(
|
426 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting" " `use_cache=False`..."
|
427 |
+
)
|
428 |
+
use_cache = False
|
429 |
+
|
430 |
+
# decoder layers
|
431 |
+
all_hidden_states = () if output_hidden_states else None
|
432 |
+
all_self_attns = () if output_attentions else None
|
433 |
+
all_cross_attentions = () if output_attentions else None
|
434 |
+
next_decoder_cache = () if use_cache else None
|
435 |
+
|
436 |
+
for idx, decoder_layer in enumerate(self.layers):
|
437 |
+
if output_hidden_states:
|
438 |
+
all_hidden_states += (hidden_states,)
|
439 |
+
|
440 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
441 |
+
|
442 |
+
if self.gradient_checkpointing and self.training:
|
443 |
+
layer_outputs = self._gradient_checkpointing_func(
|
444 |
+
decoder_layer.__call__,
|
445 |
+
hidden_states,
|
446 |
+
attention_mask,
|
447 |
+
past_key_value=None,
|
448 |
+
use_cache=use_cache,
|
449 |
+
)
|
450 |
+
else:
|
451 |
+
layer_outputs = decoder_layer(
|
452 |
+
hidden_states,
|
453 |
+
attention_mask=attention_mask,
|
454 |
+
past_key_value=past_key_value,
|
455 |
+
use_cache=use_cache,
|
456 |
+
)
|
457 |
+
|
458 |
+
hidden_states = layer_outputs[0]
|
459 |
+
|
460 |
+
if use_cache:
|
461 |
+
next_decoder_cache += (layer_outputs[1],)
|
462 |
+
|
463 |
+
if past_key_values_length == 0:
|
464 |
+
hidden_states = hidden_states[:,src_length:,:]
|
465 |
+
|
466 |
+
hidden_states = self.layer_norm(hidden_states)
|
467 |
+
|
468 |
+
# add hidden states from the last decoder layer
|
469 |
+
if output_hidden_states:
|
470 |
+
all_hidden_states += (hidden_states,)
|
471 |
+
|
472 |
+
next_cache = next_decoder_cache if use_cache else None
|
473 |
+
|
474 |
+
model_output = BaseModelOutputWithPastAndCrossAttentions(
|
475 |
+
last_hidden_state=hidden_states,
|
476 |
+
past_key_values=next_cache,
|
477 |
+
hidden_states=all_hidden_states,
|
478 |
+
attentions=all_self_attns,
|
479 |
+
cross_attentions=all_cross_attentions,
|
480 |
+
)
|
481 |
+
model_output.registering_cache = {
|
482 |
+
"register_nums": register_nums,
|
483 |
+
"src_length": src_length
|
484 |
+
}
|
485 |
+
return model_output
|
486 |
+
|
487 |
+
|
488 |
+
# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100ScaledWordEmbedding
|
489 |
+
class MitreScaledWordEmbedding(nn.Embedding):
|
490 |
+
"""
|
491 |
+
This module overrides nn.Embeddings' forward by multiplying with embeddings scale.
|
492 |
+
"""
|
493 |
+
def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int, embed_scale: Optional[float] = 1.0):
|
494 |
+
super().__init__(num_embeddings, embedding_dim, padding_idx)
|
495 |
+
self.embed_scale = embed_scale
|
496 |
+
|
497 |
+
def forward(self, input_ids: torch.Tensor):
|
498 |
+
return super().forward(input_ids) * self.embed_scale
|
499 |
+
|
500 |
+
|
501 |
+
class MitreSinusoidalPositionalEmbedding(nn.Module):
|
502 |
+
"""This module produces sinusoidal positional embeddings of any length."""
|
503 |
+
|
504 |
+
def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None):
|
505 |
+
super().__init__()
|
506 |
+
self.offset = 2
|
507 |
+
self.embedding_dim = embedding_dim
|
508 |
+
self.padding_idx = padding_idx
|
509 |
+
self.make_weights(num_positions + self.offset, embedding_dim, padding_idx)
|
510 |
+
|
511 |
+
def make_weights(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
|
512 |
+
emb_weights = self.get_embedding(num_embeddings, embedding_dim, padding_idx)
|
513 |
+
if hasattr(self, "weights"):
|
514 |
+
# in forward put the weights on the correct dtype and device of the param
|
515 |
+
emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device)
|
516 |
+
|
517 |
+
self.register_buffer("weights", emb_weights, persistent=False)
|
518 |
+
|
519 |
+
@staticmethod
|
520 |
+
def get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
|
521 |
+
"""
|
522 |
+
Build sinusoidal embeddings.
|
523 |
+
|
524 |
+
This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of
|
525 |
+
"Attention Is All You Need".
|
526 |
+
"""
|
527 |
+
half_dim = embedding_dim // 2
|
528 |
+
emb = math.log(10000) / (half_dim - 1)
|
529 |
+
emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb)
|
530 |
+
emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0)
|
531 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1)
|
532 |
+
if embedding_dim % 2 == 1:
|
533 |
+
# zero pad
|
534 |
+
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
|
535 |
+
if padding_idx is not None:
|
536 |
+
emb[padding_idx, :] = 0
|
537 |
+
|
538 |
+
return emb.to(torch.get_default_dtype())
|
539 |
+
|
540 |
+
@torch.no_grad()
|
541 |
+
def forward(
|
542 |
+
self, input_ids: torch.Tensor = None, past_key_values_length: int = 0, src_length: int = 0
|
543 |
+
):
|
544 |
+
bsz, seq_len = input_ids.size()
|
545 |
+
# Create the position ids from the input token ids. Any padded tokens remain padded.
|
546 |
+
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length).to(
|
547 |
+
input_ids.device
|
548 |
+
)
|
549 |
+
|
550 |
+
if past_key_values_length > 0 and src_length > 0:
|
551 |
+
position_ids = torch.where(position_ids == 1, position_ids, position_ids - src_length)
|
552 |
+
|
553 |
+
# expand embeddings if needed
|
554 |
+
max_pos = self.padding_idx + 1 + seq_len + past_key_values_length
|
555 |
+
|
556 |
+
if max_pos > self.weights.size(0):
|
557 |
+
self.make_weights(max_pos + self.offset, self.embedding_dim, self.padding_idx)
|
558 |
+
|
559 |
+
return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, self.weights.shape[-1]).detach()
|
560 |
+
|
561 |
+
class MitreModel(MitrePreTrainedModel):
|
562 |
+
_tied_weights_keys = ["decoder.embed_tokens.weight"]
|
563 |
+
|
564 |
+
def __init__(self, config: MitreConfig):
|
565 |
+
super().__init__(config)
|
566 |
+
|
567 |
+
self.decoder = MitreDecoder(config)
|
568 |
+
|
569 |
+
# Initialize weights and apply final processing
|
570 |
+
self.post_init()
|
571 |
+
|
572 |
+
def get_input_embeddings(self):
|
573 |
+
return self.decoder.embed_tokens
|
574 |
+
|
575 |
+
def get_decoder(self):
|
576 |
+
return self.decoder
|
577 |
+
|
578 |
+
def forward(
|
579 |
+
self,
|
580 |
+
input_ids: Optional[torch.LongTensor] = None,
|
581 |
+
decoder_input_ids: Optional[torch.Tensor] = None,
|
582 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
583 |
+
use_cache: Optional[bool] = None,
|
584 |
+
output_attentions: Optional[bool] = None,
|
585 |
+
output_hidden_states: Optional[bool] = None,
|
586 |
+
registering_cache: dict = None,
|
587 |
+
) -> Union[Tuple[torch.Tensor], Seq2SeqModelOutput]:
|
588 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
589 |
+
output_hidden_states = (
|
590 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
591 |
+
)
|
592 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
593 |
+
|
594 |
+
decoder_outputs = self.decoder(
|
595 |
+
input_ids=input_ids,
|
596 |
+
decoder_input_ids=decoder_input_ids,
|
597 |
+
past_key_values=past_key_values,
|
598 |
+
use_cache=use_cache,
|
599 |
+
output_hidden_states=output_hidden_states,
|
600 |
+
registering_cache=registering_cache
|
601 |
+
)
|
602 |
+
|
603 |
+
model_output = Seq2SeqModelOutput(
|
604 |
+
last_hidden_state=decoder_outputs.last_hidden_state,
|
605 |
+
past_key_values=decoder_outputs.past_key_values,
|
606 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
607 |
+
decoder_attentions=decoder_outputs.attentions,
|
608 |
+
)
|
609 |
+
model_output.registering_cache = decoder_outputs.registering_cache
|
610 |
+
return model_output
|
611 |
+
|
612 |
+
class MitreForConditionalGeneration(MitrePreTrainedModel, GenerationMixin):
|
613 |
+
base_model_prefix = "model"
|
614 |
+
_tied_weights_keys = ["decoder.embed_tokens.weight", "lm_head.weight"]
|
615 |
+
|
616 |
+
def __init__(self, config: MitreConfig):
|
617 |
+
super().__init__(config)
|
618 |
+
self.model = MitreModel(config)
|
619 |
+
self.lm_head = nn.Linear(config.d_model, self.model.decoder.embed_tokens.num_embeddings, bias=False)
|
620 |
+
|
621 |
+
# Initialize weights and apply final processing
|
622 |
+
self.post_init()
|
623 |
+
|
624 |
+
def get_decoder(self):
|
625 |
+
return self.model.get_decoder()
|
626 |
+
|
627 |
+
def get_output_embeddings(self):
|
628 |
+
return self.lm_head
|
629 |
+
|
630 |
+
def set_output_embeddings(self, new_embeddings):
|
631 |
+
self.lm_head = new_embeddings
|
632 |
+
|
633 |
+
def forward(
|
634 |
+
self,
|
635 |
+
input_ids: Optional[torch.LongTensor] = None,
|
636 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
637 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
638 |
+
labels: Optional[torch.LongTensor] = None,
|
639 |
+
use_cache: Optional[bool] = None,
|
640 |
+
output_hidden_states: Optional[bool] = None,
|
641 |
+
registering_cache: dict = None,
|
642 |
+
) -> Union[Tuple[torch.Tensor], Seq2SeqLMOutput]:
|
643 |
+
outputs = self.model(
|
644 |
+
input_ids=input_ids,
|
645 |
+
decoder_input_ids=decoder_input_ids,
|
646 |
+
past_key_values=past_key_values,
|
647 |
+
use_cache=use_cache,
|
648 |
+
output_hidden_states=output_hidden_states,
|
649 |
+
registering_cache=registering_cache,
|
650 |
+
)
|
651 |
+
|
652 |
+
lm_logits = self.lm_head(outputs[0])
|
653 |
+
|
654 |
+
if labels is not None:
|
655 |
+
raise NotImplementedError("Please implement your loss function here.")
|
656 |
+
|
657 |
+
model_output = Seq2SeqLMOutput(
|
658 |
+
loss=None,
|
659 |
+
logits=lm_logits,
|
660 |
+
past_key_values=outputs.past_key_values,
|
661 |
+
decoder_hidden_states=outputs.decoder_hidden_states,
|
662 |
+
decoder_attentions=outputs.decoder_attentions,
|
663 |
+
)
|
664 |
+
model_output.registering_cache = outputs.registering_cache
|
665 |
+
return model_output
|
666 |
+
|
667 |
+
@staticmethod
|
668 |
+
def _reorder_cache(past_key_values, beam_idx):
|
669 |
+
reordered_past = ()
|
670 |
+
for layer_past in past_key_values:
|
671 |
+
reordered_past += (
|
672 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
673 |
+
)
|
674 |
+
return reordered_past
|
675 |
+
|
676 |
+
@staticmethod
|
677 |
+
def _reorder_register_nums(register_nums, beam_idx):
|
678 |
+
return register_nums.index_select(0, beam_idx.to(register_nums.device))
|
679 |
+
|
680 |
+
@staticmethod
|
681 |
+
def _expand_inputs_for_generation(
|
682 |
+
input_ids: Optional[torch.LongTensor] = None,
|
683 |
+
beam_size: int = 1,
|
684 |
+
) -> torch.LongTensor:
|
685 |
+
"""
|
686 |
+
Expands input_ids from [batch_size, len(tokens)] to [batch_size * expand_size, , len(tokens)]
|
687 |
+
This is simplified from 'transformers.generation.utils.GenerationMixin._expand_inputs_for_generation'
|
688 |
+
"""
|
689 |
+
if beam_size == 1:
|
690 |
+
return input_ids
|
691 |
+
|
692 |
+
return input_ids.repeat_interleave(beam_size, dim=0)
|
693 |
+
|
694 |
+
def generate(self,
|
695 |
+
input_ids: Optional[torch.Tensor] = None,
|
696 |
+
generation_config: Optional[GenerationConfig] = None,
|
697 |
+
**kwargs: Dict
|
698 |
+
):
|
699 |
+
"""
|
700 |
+
Inference with beam search.
|
701 |
+
This code is simplified from 'transformers.generation.utils.GenerationMixin.generate'.
|
702 |
+
This code follows the style of m2m and nllb.
|
703 |
+
Therefore, there are two points need improvement.
|
704 |
+
TODO
|
705 |
+
1. early_stop in beam search.
|
706 |
+
Current early_stop is at the beam search level instead of model level. Specficially,
|
707 |
+
although beamscorer generates eos to the sequence, the sequence is filled by 'pad(1)'.
|
708 |
+
As a result, the sequence, which has already finished, will be computed by the model
|
709 |
+
continuously. We plan to remove the finished token as Fairseq's style.
|
710 |
+
2. build self-attention mask.
|
711 |
+
Current building happens within the model. Thus, when running beam search, we have to
|
712 |
+
create a mask whose size is (beam_size * batch_size) from scratch. If we create the mask
|
713 |
+
outside of the model, we can create the mask by duplicating beam_size times.
|
714 |
+
Moreover, we can prepare a cache of mask in beam search to avoid create mask many times.
|
715 |
+
"""
|
716 |
+
if generation_config != None:
|
717 |
+
assert type(generation_config) is GenerationConfig
|
718 |
+
self.generation_config = generation_config
|
719 |
+
self.generation_config.update(**kwargs)
|
720 |
+
|
721 |
+
generation_config = self.generation_config
|
722 |
+
|
723 |
+
batch_size = input_ids.shape[0]
|
724 |
+
beam_size = generation_config.num_beams
|
725 |
+
device = input_ids.device
|
726 |
+
max_cache_length = generation_config.max_length
|
727 |
+
eos_token_id = torch.Tensor([generation_config.eos_token_id])
|
728 |
+
|
729 |
+
# initial the target tokens
|
730 |
+
decoder_input_ids = torch.full(
|
731 |
+
(batch_size, 1),
|
732 |
+
self.generation_config.decoder_start_token_id,
|
733 |
+
dtype=input_ids.dtype,
|
734 |
+
device=device
|
735 |
+
)
|
736 |
+
|
737 |
+
beam_scorer = BeamSearchScorer(
|
738 |
+
batch_size=batch_size,
|
739 |
+
num_beams=beam_size,
|
740 |
+
device=device,
|
741 |
+
length_penalty=self.generation_config.length_penalty,
|
742 |
+
do_early_stopping=self.generation_config.early_stopping,
|
743 |
+
num_beam_hyps_to_keep=self.generation_config.num_return_sequences,
|
744 |
+
max_length=max_cache_length,
|
745 |
+
)
|
746 |
+
|
747 |
+
input_ids = self._expand_inputs_for_generation(input_ids, beam_size)
|
748 |
+
decoder_input_ids = self._expand_inputs_for_generation(decoder_input_ids, beam_size)
|
749 |
+
# decoder_input_ids.to(device)
|
750 |
+
cur_len = decoder_input_ids.shape[1]
|
751 |
+
|
752 |
+
this_peer_finished = False
|
753 |
+
past_key_values = None
|
754 |
+
registering_cache = None
|
755 |
+
|
756 |
+
logits_processor = LogitsProcessorList()
|
757 |
+
stopping_criteria = StoppingCriteriaList()
|
758 |
+
|
759 |
+
beam_scores = torch.zeros((batch_size, beam_size), dtype=torch.float, device=input_ids.device)
|
760 |
+
beam_scores[:, 1:] = -1e9
|
761 |
+
beam_scores = beam_scores.view((batch_size * beam_size,))
|
762 |
+
while not this_peer_finished:
|
763 |
+
|
764 |
+
if past_key_values is not None:
|
765 |
+
decoder_input_ids_for_generation = decoder_input_ids[:, -1:]
|
766 |
+
else:
|
767 |
+
decoder_input_ids_for_generation = decoder_input_ids
|
768 |
+
|
769 |
+
outputs = self(input_ids, decoder_input_ids_for_generation, past_key_values=past_key_values, use_cache=True, registering_cache=registering_cache)
|
770 |
+
|
771 |
+
del input_ids
|
772 |
+
input_ids = None
|
773 |
+
|
774 |
+
past_key_values = outputs.past_key_values
|
775 |
+
registering_cache = outputs.registering_cache
|
776 |
+
|
777 |
+
next_token_logits = outputs.logits[:, -1, :].clone().float()
|
778 |
+
next_token_logits = next_token_logits.to(device)
|
779 |
+
|
780 |
+
next_token_scores = nn.functional.log_softmax(
|
781 |
+
next_token_logits, dim=-1
|
782 |
+
) # (batch_size * num_beams, vocab_size)
|
783 |
+
|
784 |
+
next_token_scores_processed = logits_processor(decoder_input_ids, next_token_scores)
|
785 |
+
next_token_scores = next_token_scores_processed + beam_scores[:, None].expand_as(
|
786 |
+
next_token_scores_processed
|
787 |
+
)
|
788 |
+
|
789 |
+
# reshape for beam search
|
790 |
+
vocab_size = next_token_scores.shape[-1]
|
791 |
+
next_token_scores = next_token_scores.view(batch_size, beam_size * vocab_size)
|
792 |
+
|
793 |
+
# Beam token selection: pick 1 + eos_token_id.shape[0] next tokens for each beam so we have at least 1
|
794 |
+
# non eos token per beam.
|
795 |
+
n_eos_tokens = eos_token_id.shape[0] if eos_token_id is not None else 0
|
796 |
+
n_tokens_to_keep = max(2, 1 + n_eos_tokens) * beam_size
|
797 |
+
next_token_scores, next_tokens = torch.topk(
|
798 |
+
next_token_scores, n_tokens_to_keep, dim=1, largest=True, sorted=True
|
799 |
+
)
|
800 |
+
|
801 |
+
next_indices = torch.div(next_tokens, vocab_size, rounding_mode="floor")
|
802 |
+
next_tokens = next_tokens % vocab_size
|
803 |
+
beam_outputs = beam_scorer.process(
|
804 |
+
decoder_input_ids,
|
805 |
+
next_token_scores,
|
806 |
+
next_tokens,
|
807 |
+
next_indices,
|
808 |
+
pad_token_id=generation_config.pad_token_id,
|
809 |
+
eos_token_id=generation_config.eos_token_id,
|
810 |
+
decoder_prompt_len=1,
|
811 |
+
)
|
812 |
+
beam_scores = beam_outputs["next_beam_scores"]
|
813 |
+
beam_next_tokens = beam_outputs["next_beam_tokens"]
|
814 |
+
beam_idx = beam_outputs["next_beam_indices"]
|
815 |
+
decoder_input_ids = torch.cat([decoder_input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1)
|
816 |
+
|
817 |
+
del outputs
|
818 |
+
|
819 |
+
past_key_values = self._reorder_cache(past_key_values, beam_idx)
|
820 |
+
registering_cache["register_nums"] = self._reorder_register_nums(registering_cache["register_nums"], beam_idx)
|
821 |
+
|
822 |
+
cur_len = cur_len + 1
|
823 |
+
|
824 |
+
if beam_scorer.is_done:
|
825 |
+
this_peer_finished = True
|
826 |
+
|
827 |
+
sequence_outputs = beam_scorer.finalize(
|
828 |
+
decoder_input_ids,
|
829 |
+
beam_scores,
|
830 |
+
next_tokens,
|
831 |
+
next_indices,
|
832 |
+
pad_token_id=generation_config.pad_token_id,
|
833 |
+
eos_token_id=eos_token_id,
|
834 |
+
max_length=stopping_criteria.max_length,
|
835 |
+
decoder_prompt_len=1,
|
836 |
+
)
|
837 |
+
|
838 |
+
return sequence_outputs["sequences"]
|
839 |
+
|
840 |
+
|
841 |
+
MitreForConditionalGeneration.register_for_auto_class("AutoModel")
|
tokenization_mitre.py
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
from pathlib import Path
|
4 |
+
from shutil import copyfile
|
5 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
6 |
+
import torch
|
7 |
+
|
8 |
+
import sentencepiece
|
9 |
+
|
10 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
11 |
+
from transformers.utils import logging
|
12 |
+
|
13 |
+
|
14 |
+
logger = logging.get_logger(__name__)
|
15 |
+
|
16 |
+
SPIECE_UNDERLINE = "▁"
|
17 |
+
|
18 |
+
VOCAB_FILES_NAMES = {
|
19 |
+
"vocab_file": "vocab.json",
|
20 |
+
"spm_file": "mitre_spm.model",
|
21 |
+
"tokenizer_config_file": "tokenizer_config.json",
|
22 |
+
}
|
23 |
+
|
24 |
+
# follow iso639-2
|
25 |
+
FAIRSEQ_LANGUAGE_CODES = ["en", "de", "nl", "sv", "da", "af", "fr", "es", "it", "pt", "ro", "ru", "cs", "pl", "bg", "uk", "id", "jv", "ms", "tl", "ja", "zh", "ko", "vi"]
|
26 |
+
|
27 |
+
# This is the tokenizer of MITRE.
|
28 |
+
# This code is modified from transformers.models.m2m_100.tokenization_m2m_100.M2M100Tokenizer
|
29 |
+
class MitreTokenizer(PreTrainedTokenizer):
|
30 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
31 |
+
model_input_names = ["input_ids", "attention_mask"]
|
32 |
+
|
33 |
+
prefix_tokens: List[int] = []
|
34 |
+
suffix_tokens: List[int] = []
|
35 |
+
|
36 |
+
def __init__(
|
37 |
+
self,
|
38 |
+
vocab_file,
|
39 |
+
spm_file,
|
40 |
+
bos_token="<s>",
|
41 |
+
eos_token="</s>",
|
42 |
+
sep_token="</s>",
|
43 |
+
pad_token="<pad>",
|
44 |
+
unk_token="<unk>",
|
45 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
46 |
+
**kwargs,
|
47 |
+
) -> None:
|
48 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
49 |
+
fairseq_language_code = FAIRSEQ_LANGUAGE_CODES
|
50 |
+
self.lang_code_to_token = {lang_code: f"__{lang_code}__" for lang_code in fairseq_language_code}
|
51 |
+
|
52 |
+
additional_special_tokens = kwargs.pop("additional_special_tokens", [])
|
53 |
+
for lang_code in fairseq_language_code:
|
54 |
+
token = self.get_lang_token(lang_code)
|
55 |
+
if token not in additional_special_tokens:
|
56 |
+
additional_special_tokens.append(token)
|
57 |
+
|
58 |
+
self.vocab_file = vocab_file
|
59 |
+
self.encoder = load_json(vocab_file)
|
60 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
61 |
+
self.spm_file = spm_file
|
62 |
+
self.sp_model = load_spm(spm_file, self.sp_model_kwargs)
|
63 |
+
|
64 |
+
self.encoder_size = len(self.encoder)
|
65 |
+
|
66 |
+
self.lang_token_to_id = {
|
67 |
+
self.get_lang_token(lang_code): self.encoder_size + i for i, lang_code in enumerate(fairseq_language_code)
|
68 |
+
}
|
69 |
+
self.lang_code_to_id = {lang_code: self.encoder_size + i for i, lang_code in enumerate(fairseq_language_code)}
|
70 |
+
self.id_to_lang_token = {v: k for k, v in self.lang_token_to_id.items()}
|
71 |
+
# default
|
72 |
+
self.tgt_lang = "en"
|
73 |
+
|
74 |
+
super().__init__(
|
75 |
+
bos_token=bos_token,
|
76 |
+
eos_token=eos_token,
|
77 |
+
sep_token=sep_token,
|
78 |
+
unk_token=unk_token,
|
79 |
+
pad_token=pad_token,
|
80 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
81 |
+
additional_special_tokens=additional_special_tokens,
|
82 |
+
**kwargs,
|
83 |
+
)
|
84 |
+
|
85 |
+
@property
|
86 |
+
def vocab_size(self) -> int:
|
87 |
+
return len(self.encoder)
|
88 |
+
|
89 |
+
def get_vocab(self) -> Dict:
|
90 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
91 |
+
vocab.update(self.added_tokens_encoder)
|
92 |
+
return vocab
|
93 |
+
|
94 |
+
def _tokenize(self, text: str) -> List[str]:
|
95 |
+
return self.sp_model.encode(text, out_type=str)
|
96 |
+
|
97 |
+
def _convert_token_to_id(self, token):
|
98 |
+
if token in self.lang_token_to_id:
|
99 |
+
return self.lang_token_to_id[token]
|
100 |
+
return self.encoder.get(token, self.encoder[self.unk_token])
|
101 |
+
|
102 |
+
def _convert_id_to_token(self, index: int) -> str:
|
103 |
+
"""Converts an index (integer) in a token (str) using the decoder."""
|
104 |
+
if index in self.id_to_lang_token:
|
105 |
+
return self.id_to_lang_token[index]
|
106 |
+
return self.decoder.get(index, self.unk_token)
|
107 |
+
|
108 |
+
def convert_tokens_to_string(self, tokens):
|
109 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
110 |
+
current_sub_tokens = []
|
111 |
+
out_string = ""
|
112 |
+
for token in tokens:
|
113 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
114 |
+
if token in self.all_special_tokens:
|
115 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
116 |
+
current_sub_tokens = []
|
117 |
+
else:
|
118 |
+
current_sub_tokens.append(token)
|
119 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
120 |
+
return out_string.strip()
|
121 |
+
|
122 |
+
def __getstate__(self) -> Dict:
|
123 |
+
state = self.__dict__.copy()
|
124 |
+
state["sp_model"] = None
|
125 |
+
return state
|
126 |
+
|
127 |
+
def __setstate__(self, d: Dict) -> None:
|
128 |
+
self.__dict__ = d
|
129 |
+
|
130 |
+
# for backward compatibility
|
131 |
+
if not hasattr(self, "sp_model_kwargs"):
|
132 |
+
self.sp_model_kwargs = {}
|
133 |
+
|
134 |
+
self.sp_model = load_spm(self.spm_file, self.sp_model_kwargs)
|
135 |
+
|
136 |
+
def build_inputs_with_special_tokens(
|
137 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
138 |
+
) -> List[int]:
|
139 |
+
if token_ids_1 is None:
|
140 |
+
return self.prefix_tokens + token_ids_0 + self.suffix_tokens
|
141 |
+
return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens
|
142 |
+
|
143 |
+
def _switch_to_input_mode(self):
|
144 |
+
self.set_tgt_lang_special_tokens(self.tgt_lang)
|
145 |
+
|
146 |
+
def _switch_to_target_mode(self):
|
147 |
+
self.clear_lang_special_tokens()
|
148 |
+
|
149 |
+
def clear_lang_special_tokens(self) -> None:
|
150 |
+
self.prefix_tokens = []
|
151 |
+
self.suffix_tokens = [self.eos_token_id]
|
152 |
+
|
153 |
+
def set_tgt_lang_special_tokens(self, tgt_lang: str) -> None:
|
154 |
+
"""Reset the special tokens to the target language setting. No prefix and suffix=[eos, tgt_lang_code]."""
|
155 |
+
lang_token = self.get_lang_token(tgt_lang)
|
156 |
+
self.cur_lang_id = self.lang_token_to_id[lang_token]
|
157 |
+
self.prefix_tokens = [self.cur_lang_id]
|
158 |
+
self.suffix_tokens = [self.eos_token_id]
|
159 |
+
|
160 |
+
def get_lang_token(self, lang: str) -> str:
|
161 |
+
return self.lang_code_to_token[lang]
|
162 |
+
|
163 |
+
def get_lang_id(self, lang: str) -> int:
|
164 |
+
lang_token = self.get_lang_token(lang)
|
165 |
+
return self.lang_token_to_id[lang_token]
|
166 |
+
|
167 |
+
def encode_source_tokens_to_input_ids(self, inputs, target_language="en"):
|
168 |
+
"""pads + target language id + source tokens id + eos id"""
|
169 |
+
self.tgt_lang = target_language
|
170 |
+
input_ids = self.__call__(inputs, add_special_tokens=True, padding_side='left', padding=True, return_attention_mask=False, return_tensors="pt")
|
171 |
+
return input_ids["input_ids"]
|
172 |
+
|
173 |
+
def encode_source_tokens_to_input_ids_with_different_tags(self, inputs_text, target_languages_list: list):
|
174 |
+
"""
|
175 |
+
'encode_source_tokens_to_input_ids' only supports a language tag,
|
176 |
+
but sevenral in a batch could have different language tags.
|
177 |
+
"""
|
178 |
+
self.tgt_lang = "en"
|
179 |
+
input_ids = self.__call__(inputs_text, add_special_tokens=True, padding_side='left', padding=True, return_attention_mask=False, return_tensors="pt")["input_ids"]
|
180 |
+
_, max_indices = torch.max(input_ids, dim=1)
|
181 |
+
input_ids[torch.arange(max_indices.shape[0]), max_indices] = torch.LongTensor([self.lang_token_to_id[self.get_lang_token(lang_code)] for lang_code in target_languages_list])
|
182 |
+
return input_ids
|
183 |
+
|
184 |
+
def encode_target_tokens_to_labels(self, inputs_text):
|
185 |
+
"""target tokens id + eos id + pads"""
|
186 |
+
input_ids = self.__call__(text_target=inputs_text, add_special_tokens=True, padding_side='right', padding=True, return_attention_mask=False, return_tensors="pt")
|
187 |
+
return input_ids["input_ids"]
|
188 |
+
|
189 |
+
def encode_target_tokens_to_input_ids(self, inputs_text):
|
190 |
+
"""eos id + target tokens id + pads, namely, left shifted"""
|
191 |
+
input_ids = self.__call__(text_target=inputs_text, add_special_tokens=False, padding_side='right', padding=True, return_attention_mask=False, return_tensors="pt")
|
192 |
+
labels_without_eos = input_ids["input_ids"]
|
193 |
+
return torch.cat((torch.full((labels_without_eos.size(0), 1), self.eos_token_id), labels_without_eos), dim=1)
|
194 |
+
|
195 |
+
|
196 |
+
def load_spm(path: str, sp_model_kwargs: Dict[str, Any]) -> sentencepiece.SentencePieceProcessor:
|
197 |
+
spm = sentencepiece.SentencePieceProcessor(**sp_model_kwargs)
|
198 |
+
spm.Load(str(path))
|
199 |
+
return spm
|
200 |
+
|
201 |
+
|
202 |
+
def load_json(path: str) -> Union[Dict, List]:
|
203 |
+
with open(path, "r") as f:
|
204 |
+
return json.load(f)
|
205 |
+
|
206 |
+
|
207 |
+
def save_json(data, path: str) -> None:
|
208 |
+
with open(path, "w") as f:
|
209 |
+
json.dump(data, f, indent=2)
|
210 |
+
|
211 |
+
MitreTokenizer.register_for_auto_class("AutoTokenizer")
|
tokenizer_config.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"src_lang": null,
|
3 |
+
"tgt_lang": null,
|
4 |
+
"bos_token": "<s>",
|
5 |
+
"eos_token": "</s>",
|
6 |
+
"sep_token": "</s>",
|
7 |
+
"unk_token": "<unk>",
|
8 |
+
"pad_token": "<pad>",
|
9 |
+
"model_max_length": 256,
|
10 |
+
"name_or_path": "naist-nlp/mitre_913m",
|
11 |
+
"tokenizer_class": "MitreTokenizer",
|
12 |
+
"auto_map": {
|
13 |
+
"AutoTokenizer": ["tokenization_mitre.MitreTokenizer"]
|
14 |
+
}
|
15 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|