namespace-Pt commited on
Commit
0066775
·
verified ·
1 Parent(s): 626af10

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ Llama-3-8B-Instruct-80K-QLoRA-Merged-Q4_K_M.gguf filter=lfs diff=lfs merge=lfs -text
37
+ Llama-3-8B-Instruct-80K-QLoRA-Merged-Q8_0.gguf filter=lfs diff=lfs merge=lfs -text
Llama-3-8B-Instruct-80K-QLoRA-Merged-Q4_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c88be4f922031df3d02d99566d612934e4b44a2a2adfcaf6633fc0f2a3c1e31e
3
+ size 4921247040
Llama-3-8B-Instruct-80K-QLoRA-Merged-Q8_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb20ef2f6ab01b2ccfd33a56d45ade06d66e247266b99330636b08b4e181a52a
3
+ size 8541283648
README.md CHANGED
@@ -1,3 +1,105 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ pipeline_tag: text-generation
4
+ ---
5
+
6
+ <div align="center">
7
+ <h1>Llama-3-8B-Instruct-80K-QLoRA-Merged</h1>
8
+
9
+ <a href="https://github.com/FlagOpen/FlagEmbedding/tree/master/Long_LLM/longllm_qlora">[Data&Code]</a>
10
+ </div>
11
+
12
+ We extend the context length of Llama-3-8B-Instruct to 80K using QLoRA and 3.5K long-context training data synthesized from GPT-4. The entire training cycle is super efficient, which takes 8 hours on a 8xA800 (80G) machine. Yet, the resulted model achieves remarkable performance on a series of downstream long-context evaluation benchmarks.
13
+
14
+ **NOTE**: This repo contains the quantized model of [namespace-Pt/Llama-3-8B-Instruct-80K-QLoRA-Merged](https://huggingface.co/namespace-Pt/Llama-3-8B-Instruct-80K-QLoRA-Merged). The quantization is conducted with [llama.cpp](https://github.com/ggerganov/llama.cpp) (Q4_K_M and Q8_0).
15
+
16
+ # Evaluation
17
+
18
+ All the following evaluation results are based on the [UNQUANTIZED MODEL](https://huggingface.co/namespace-Pt/Llama-3-8B-Instruct-80K-QLoRA-Merged). They can be reproduced following instructions [here](https://github.com/FlagOpen/FlagEmbedding/tree/master/Long_LLM/longllm_qlora).
19
+
20
+ **NOTE**: After quantization, you may observe quality degradation.
21
+
22
+ ## Needle in a Haystack
23
+ We evaluate the model on the Needle-In-A-HayStack task using the official setting. The blue vertical line indicates the training context length, i.e. 80K.
24
+
25
+ <img src="data/needle.png"></img>
26
+
27
+
28
+ ## LongBench
29
+ We evaluate the model on [LongBench](https://arxiv.org/abs/2308.14508) using 32K context length and the official prompt template. For [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct), we use 8K context length.
30
+
31
+ |Model|Single-Doc QA|Multi-Doc QA|Summarization|Few-Shot Learning|Synthetic|Code|Avg|
32
+ |:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|
33
+ |[meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)|37.33|36.04|26.83|**69.56**|37.75|53.24|43.20|
34
+ |[gradientai/Llama-3-8B-Instruct-262k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k)|37.29|31.20|26.18|67.25|44.25|**62.71**|43.73|
35
+ |Llama-3-8B-Instruct-80K-QLoRA-Merged|**43.57**|**43.07**|**28.93**|69.15|**48.50**|51.95|**47.19**|
36
+
37
+ ## InfiniteBench
38
+ We evaluate the model on [InfiniteBench](https://arxiv.org/pdf/2402.13718.pdf) using 80K context length and the official prompt template. The results of GPT-4 is copied from the [paper](https://arxiv.org/pdf/2402.13718.pdf). For [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct), we use 8K context length.
39
+
40
+ |Model|LongBookQA Eng|LongBookSum Eng|
41
+ |:-:|:-:|:-:|
42
+ |GPT-4|22.22|14.73|
43
+ |[meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)|7.00|**16.40**|
44
+ |[gradientai/Llama-3-8B-Instruct-262k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k)|20.30|10.34|
45
+ |Llama-3-8B-Instruct-80K-QLoRA-Merged|**30.92**|14.73|
46
+
47
+ ## Topic Retrieval
48
+ We evaluate the model on [Topic Retrieval](https://lmsys.org/blog/2023-06-29-longchat/) task with `[5,10,15,20,25,30,40,50,60,70]` topics.
49
+
50
+ <img src="data/topic.png"></img>
51
+
52
+
53
+ ## MMLU
54
+ We evaluate the model's zero-shot performance on MMLU benchmark as a reflection of its short-context capability.
55
+
56
+ |Model|STEM|Social Sciences|Humanities|Others|Avg|
57
+ |:-:|:-:|:-:|:-:|:-:|:-:|
58
+ |[Llama-2-7B-Chat](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)|35.92|54.37|51.74|51.42|47.22|
59
+ |[Mistral-7B-v0.2-Instruct](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)|48.79|69.95|64.99|61.64|60.10|
60
+ |[meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)|**53.87**|**75.66**|**69.44**|69.75|**65.91**|
61
+ |[gradientai/Llama-3-8B-Instruct-262k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k)|52.10|73.26|67.15|**69.80**|64.34|
62
+ |Llama-3-8B-Instruct-80K-QLoRA-Merged|53.10|73.24|67.32|68.79|64.44|
63
+
64
+ # Environment
65
+ ```bash
66
+ llama_cpp
67
+ torch==2.1.2
68
+ transformers==4.39.3
69
+ ```
70
+
71
+ # Usage
72
+ ```bash
73
+ huggingface-cli download namespace-Pt/Llama-3-8B-Instruct-80K-QLoRA-Merged-GGUF --local-dir . --local-dir-use-symlinks False
74
+ ```
75
+
76
+ In python,
77
+ ```python
78
+ from llama_cpp import Llama
79
+
80
+ llm = Llama(
81
+ model_path="./Llama-3-8B-Instruct-80K-QLoRA-Merged-Q4_K_M.gguf", # path to GGUF file
82
+ n_ctx=81920,
83
+ n_threads=96,
84
+ n_gpu_layers=32,
85
+ )
86
+
87
+ with open("./data/needle.txt") as f:
88
+ text = f.read()
89
+ inputs = f"{text}\n\nWhat is the best thing to do in San Francisco?"
90
+
91
+ print(
92
+ llm.create_chat_completion(
93
+ messages = [
94
+ {
95
+ "role": "user",
96
+ "content": inputs
97
+ }
98
+ ],
99
+ temperature=0,
100
+ max_tokens=50
101
+ )
102
+ )
103
+
104
+ # The best thing to do in San Francisco is sitting in Helmer Dolores Park on a sunny day, eating a double cheeseburger with ketchup, and watching kids playing around.
105
+ ```
data/needle.png ADDED
data/needle.txt ADDED
The diff for this file is too large to render. See raw diff
 
data/topic.png ADDED