File size: 34,015 Bytes
9bcced8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 |
import os
import torch
import numpy as np
import torch.distributed as dist
from transformers.utils import logging
from transformers import AutoTokenizer
from itertools import cycle
from typing import List
logger = logging.get_logger(__name__)
class Memory(torch.nn.Module):
def __init__(
self,
model_config,
k_seq_dim:int=2,
v_seq_dim:int=2,
):
"""Setup necessary attributes."""
super().__init__()
self.model_config = model_config
# initialize necessary parameters
self.k_seq_dim = k_seq_dim
self.v_seq_dim = v_seq_dim
self.num_layers = model_config.num_hidden_layers
self.max_position_embeddings = model_config.max_position_embeddings
self.rng = np.random.default_rng(42)
self.ultragist_window = model_config.ultragist_window
self.ultragist_stride = model_config.ultragist_stride
self.ultragist_attn = model_config.ultragist_attn
self.ultragist_ratio = model_config.ultragist_ratio
self.ultragist_ratio_mix = model_config.ultragist_ratio_mix
self.ultragist_param = model_config.ultragist_param
self.ultragist_sink_size = model_config.ultragist_sink_size
self.ultragist_attend_prev = model_config.ultragist_attend_prev
self.ultragist_tokens = torch.zeros(1, dtype=torch.long) + model_config.vocab_size
self._post_validation()
self.reset()
def _post_validation(self, verbose=True):
assert self.ultragist_window >= self.ultragist_stride, f"Make sure the ultragist_window {self.ultragist_window} >= ultragist_stride {self.ultragist_stride}!"
for ratio in self.ultragist_ratio:
assert ratio >= 0, f"Make sure all ultragist ratios are greater than or equal to 0, found {self.ultragist_ratio}!"
assert self.ultragist_attn in ["segmentation", "step-expansion", "full-coverage"], f"ultragist_attn {self.ultragist_attn} not implemented!"
assert self.ultragist_ratio_mix in ["instance-random", "step-random", "sequence", "join"] or "adapt-" in self.ultragist_ratio_mix, f"ultragist_ratio_mix {self.ultragist_ratio_mix} not implemented!"
if self.ultragist_ratio_mix == "join":
# create another stream for moving gpu tensor to cpu
# self.stream = torch.cuda.Stream()
pass
self._cpu = torch.device("cpu")
if verbose:
info = f"applying ultragist on {self.ultragist_param} (the ultragist embedding is initialized from {'bos' if self.model_config.ultragist_embed_init == 'bos' else 'eos'} embedding), with window size {self.ultragist_window}, stride {self.ultragist_stride}, {self.ultragist_attn} attention{' (attending to previous ultragists)' if self.ultragist_attend_prev else ' (no attending to previous ultragists)'}, sink size {self.ultragist_sink_size}, condensing ratio {self.ultragist_ratio} (mixed by {self.ultragist_ratio_mix})..."
logger.info(info)
def set(self, verbose=True, **kwargs):
if "ultragist_ratio_mix" in kwargs and kwargs["ultragist_ratio_mix"] == "join" and self.ultragist_ratio_mix != "join":
raise ValueError(f"You cannot switch ultragist_ratio_mix from non-join strategy to join!")
if self.ultragist_ratio_mix == "join" and "ultragist_ratio" in kwargs and sorted(kwargs["ultragist_ratio"]) != sorted(self.ultragist_ratio):
raise ValueError(f"You cannot change ultragist_ratio given ultragist_ratio_mix=join!")
for k, v in kwargs.items():
setattr(self, k, v)
self._post_validation(verbose=verbose)
def reset(self):
"""Initialize attributes for a new sequence."""
# the cursor pointing to the start of the current window
self._start_idx = 0
# the cursor pointing to the end of the current window
self._end_idx = 0
# the ultragist sizes of all strides
self._total_ultragist_sizes = []
# the ultragist ratios of all strides
self._main_ultragist_sizes = []
# the loss per batch
self._batch_loss = None
# the valid token number per batch
self._valid_token_num = None
# the step index for processing the input_ids
self._step_idx = 0
# used in set_compression_ratio
self._ratio = None
self._ultragist_ratio_iter = None
self.all_input_ids = torch.tensor([], dtype=torch.long)
self.all_attention_mask = torch.tensor([], dtype=torch.long)
if hasattr(self, "all_labels"):
del self.all_labels
# the raw activations of recent tokens
self.raw_activations = [(None, None) for _ in range(self.num_layers)]
# the attention sink activations
self.sink_activations = [(None, None) for _ in range(self.num_layers)]
# the ultragist activations
if self.ultragist_ratio_mix == "join":
self.l1_to_ln_ultragist_activations = [
[(None, None) for _ in range(self.num_layers)]
for _ in self.ultragist_ratio
]
else:
self.l1_to_ln_ultragist_activations = [
[(None, None) for _ in range(self.num_layers)]
]
def rewind(self, size=None, trim=False):
"""
Rewind raw activations that have not been condensed yet.
Args:
trim: if true, the input_ids corresponding to the raw activations are trimmed.
"""
raw_memory_size = self.get_memory_size()[1]
if size is None:
size = raw_memory_size
assert size <= raw_memory_size, f"Make sure the rewind size ({size}) is smaller or equal to the raw memory size ({raw_memory_size})!"
if size > 0:
self._end_idx -= size
for layer_idx, (key, value) in enumerate(self.raw_activations):
key = slice_tensor(key, end=-size, dim=self.k_seq_dim)
value = slice_tensor(value, end=-size, dim=self.v_seq_dim)
self.raw_activations[layer_idx] = (key, value)
if trim:
self.all_input_ids = self.all_input_ids[:, :-size]
self.all_attention_mask = self.all_attention_mask[:, :-size]
if hasattr(self, "all_labels"):
self.all_labels = self.all_labels[:, :-size]
@property
def finish(self):
is_finish = self._end_idx == self.all_sequence_length
# print(f"{dist.get_rank()} Finish: {self._end_idx}, {self.all_sequence_length}")
# if is_finish and hasattr(self, "stream"):
# self.stream.synchronize()
return is_finish
def get_memory_size(self):
ultragist_memory_size = 0
raw_memory_size = 0
sink_memory_size = 0
if self.l1_to_ln_ultragist_activations[0][0][0] is not None:
ultragist_memory_size += self.l1_to_ln_ultragist_activations[0][0][0].shape[self.k_seq_dim]
if self.raw_activations[0][0] is not None:
raw_memory_size += self.raw_activations[0][0].shape[self.k_seq_dim]
if self.sink_activations[0][0] is not None:
sink_memory_size += self.sink_activations[0][0].shape[self.k_seq_dim]
return ultragist_memory_size, raw_memory_size, sink_memory_size
def get_memory(self, ultragist_sizes=None, total_ultragist_size=None, raw_size_to_cache=None, window_size=None):
"""
Get the compressed kv cache for generating next tokens.
"""
past_key_values = []
for layer_idx in range(self.num_layers):
sink_key, sink_value = self.sink_activations[layer_idx]
ultragist_key, ultragist_value = self.l1_to_ln_ultragist_activations[0][layer_idx]
raw_key, raw_value = self.raw_activations[layer_idx]
key = cat_tensor([
sink_key, ultragist_key, raw_key,
], dim=self.k_seq_dim)
value = cat_tensor([
sink_value, ultragist_value, raw_value,
], dim=self.v_seq_dim)
if ultragist_sizes is not None:
layer_past_key_values = (key, value, ultragist_sizes, total_ultragist_size, raw_size_to_cache, window_size)
else:
layer_past_key_values = (key, value)
past_key_values.append(layer_past_key_values)
return past_key_values
def prepare(self, input_ids, attention_mask, labels):
"""
Prepare inputs for the model. These inputs belong to the same sequence.
"""
assert input_ids.shape[0] == 1, "Make sure the batch size is 1!"
assert attention_mask is None or (attention_mask == 1).all(), "Make sure there is no padding!"
if not hasattr(self, "_device"):
self._device = input_ids.device
# accumulate input_ids and attention_mask
self.all_input_ids = torch.cat([self.all_input_ids, input_ids.cpu()], dim=1)
if attention_mask is None:
attention_mask = torch.ones_like(input_ids)
self.all_attention_mask = torch.cat([self.all_attention_mask, attention_mask.cpu()], dim=1)
self.all_sequence_length = self.all_input_ids.shape[1]
if labels is not None:
# rotate labels in advance so that the loss of the last token is not ignored in every window
labels = torch.cat([labels[:, 1:].cpu(), torch.tensor([-100]).expand(labels.shape[0], 1)], dim=1)
if not hasattr(self, "all_labels"):
self.all_labels = labels
else:
self.all_labels = torch.cat([self.all_labels, labels], dim=1)
assert self.all_input_ids.shape[1] == self.all_labels.shape[1], f"Found inconsistent all_input_ids {self.all_input_ids.shape} and all_labels {self.all_labels.shape}!"
def set_compression_ratio(self, start_idx, end_idx):
"""Choose a condensing ratio from self.ultragist_ratio"""
def filter_ratio(ratios, stride):
valid_ratios = []
for ratio in ratios:
# stride must be bigger than condensing ratio because we there must be at least one ultragist
if stride < ratio:
continue
# the stride must be evenly divisible by condensing ratio
if ratio > 0 and (stride % ratio) != 0:
continue
# when training, ratio=0 is valid if previous windows contain ultragist or later windows contain ultragist
if ratio == 0 and self.training:
previous_has_zero = -1 in self._main_ultragist_sizes
following_has_nonzero = (start_idx + stride + self.ultragist_window) <= self.all_sequence_length
if previous_has_zero or (not following_has_nonzero):
continue
valid_ratios.append(ratio)
assert len(valid_ratios), f"Cannot find valid condensing ratio (among {ratios}) for stride {stride}!"
return valid_ratios
def get_max_length(ratios):
max_lengths = []
for condensing_ratio in ratios:
if condensing_ratio > 0:
max_lengths.append((self.max_position_embeddings - self.ultragist_window) * condensing_ratio + self.ultragist_window)
else:
max_lengths.append(self.max_position_embeddings)
return max_lengths
if len(self.ultragist_ratio) == 1:
return [self.ultragist_ratio[0]]
ratio_mix = self.ultragist_ratio_mix
ultragist_ratio = filter_ratio(self.ultragist_ratio, self.ultragist_stride)
if ratio_mix == "instance-random":
if self._ratio is None:
ultragist_ratio = self.rng.choice(ultragist_ratio, size=1).tolist()
self._ratio = ultragist_ratio
else:
ultragist_ratio = self._ratio
elif ratio_mix == "step-random":
ultragist_ratio = self.rng.choice(ultragist_ratio, size=1).tolist()
elif ratio_mix == "sequence":
if self._ultragist_ratio_iter is None:
self._ultragist_ratio_iter = cycle(ultragist_ratio)
ultragist_ratio = [next(self._ultragist_ratio_iter)]
elif ratio_mix == "join":
ultragist_ratio = ultragist_ratio
elif "adapt" in ratio_mix:
if self._ratio is None:
future_length = int(ratio_mix.split("-")[1])
sequence_length = self.all_input_ids.shape[1] + future_length
max_lengths = get_max_length(ultragist_ratio)
# ascendingly sort the max lengths
valid_max_lengths_and_indices = [x for x in enumerate(max_lengths) if x[1] >= sequence_length]
if len(valid_max_lengths_and_indices):
minimum_length_index = min(valid_max_lengths_and_indices, key=lambda x: x[1])[0]
# use the minimal possible length for this sequence (the smallest fold ratio)
ultragist_ratio = [ultragist_ratio[minimum_length_index]]
else:
ultragist_ratio = [max(ultragist_ratio)]
# logger.warning(f"Failed to find valid fold window and size for sequence length {sequence_length}, as the maximum theoretical length is {max(max_lengths)}. Fall back to use the maximum one: {ultragist_ratio}.")
self._ratio = ultragist_ratio
else:
ultragist_ratio = self._ratio
return ultragist_ratio
def step(self):
"""
Yield one window with the following logic:
The window size is L, the stride is S.
The window moves over S tokens at a time. The raw activations passed by the window are condensed according to a condensing_ratio.
The ultragists are added if and only if the raw activations fulfill the window.
In the future, we may switch window size to decrease cache size of raw activations.
"""
# the starting position of the current window w.r.t. the start of the current input sequence
start_idx = self._start_idx
# the end position of the current window w.r.t. the start of the current input sequence
end_idx = start_idx + self.ultragist_window
# indicates if the current window is completely filled by raw activations and new tokens
# we only append ultragist tokens for full windows
if end_idx > self.all_sequence_length:
# the input is shorter than the initial window size
end_idx = self.all_sequence_length
is_full_window = False
else:
is_full_window = True
# NOTE: in training, the entire sequence is input to the model at once
# In the last window, we do not need to append ultragists because they will not be used at all
if self.training and end_idx == self.all_sequence_length:
is_full_window = False
# the real window size (remaining_size + new_token_size)
window_size = end_idx - start_idx
if is_full_window:
ultragist_stride = self.ultragist_stride
# a list of condensing ratios
compression_ratios = self.set_compression_ratio(start_idx=start_idx, end_idx=end_idx)
ultragist_sizes = []
for condensing_ratio in compression_ratios:
if condensing_ratio > 0:
# the stride must be evenly divisible by condensing_ratio
ultragist_sizes.append(ultragist_stride // condensing_ratio)
else:
# the raw activations are used as ultragist activations
ultragist_sizes.append(-1)
# forward start_idx and end_idx
next_start_idx = start_idx + ultragist_stride
# how many raw activations to save
raw_size_to_cache = end_idx - next_start_idx
else:
# no stride because the sequence has finished
next_start_idx = start_idx
# cache all recent raw activations to be used in the next window
raw_size_to_cache = window_size
ultragist_sizes = [0]
compression_ratios = [0]
total_ultragist_size = sum(s for s in ultragist_sizes if s >= 0)
past_key_values = self.get_memory(
ultragist_sizes,
total_ultragist_size,
raw_size_to_cache,
window_size
)
# streamingly add new input_ids
input_ids = self.all_input_ids[:, self._end_idx: end_idx].to(self._device)
attention_mask = self.all_attention_mask[:, self._end_idx: end_idx].to(self._device)
if hasattr(self, "all_labels"):
labels = self.all_labels[:, self._end_idx: end_idx].to(self._device)
else:
labels = None
batch_size = input_ids.shape[0]
# append ultragists if necessary
if is_full_window:
if total_ultragist_size > 0:
input_ids = torch.cat([input_ids, self.ultragist_tokens.expand(batch_size, total_ultragist_size).to(input_ids.device, dtype=input_ids.dtype)], dim=1)
# NOTE: prepend ultragist_memory_size 1 to attention_mask because we have past_key_values
attention_mask = torch.cat([attention_mask, attention_mask.new_ones(batch_size, total_ultragist_size)], dim=1)
if labels is not None:
labels = torch.cat([labels, labels.new_zeros(batch_size, total_ultragist_size) - 100], dim=1)
# prepend 1 to attention mask for previous memory
first_key = past_key_values[0][0]
memory_size = first_key.shape[self.k_seq_dim] if first_key is not None else 0
if memory_size > 0:
attention_mask = torch.cat([attention_mask.new_ones(batch_size, memory_size), attention_mask], dim=1)
# involked in self.output()
self._total_ultragist_sizes.append(total_ultragist_size)
# involked in self.set_compression_ratio
self._main_ultragist_sizes.append(ultragist_sizes[0])
# update end_idx
self._start_idx = next_start_idx
self._end_idx = end_idx
self._step_idx += 1
# print("****************************************")
# if is_full_window:
# print(f"stride: {ultragist_stride}")
# print(f"compression ratios: {compression_ratios}")
# print(f"ultragist_sizes: {ultragist_sizes}")
# print(f"input_ids: {input_ids.shape}")
# print(f"start_idx: {start_idx}")
# print(f"next_start_idx: {next_start_idx}")
# print(f"end_idx: {end_idx}")
# x = input()
# if x == "s":
# return
return input_ids, attention_mask, past_key_values, labels
def update_memory(self, past_key_values):
"""
Accumulate ultragist activations and raw activations.
"""
for layer_idx, (key, value, ultragist_sizes, total_ultragist_size, raw_size_to_cache, window_size) in enumerate(past_key_values):
# NOTE: the past_key_values are incrementally returned (only the new keys and values are returned)
# key/value: (num_layer, 2, batch_size, num_head, new_seq_len, head_dim)
# ultragist_size: how many ultragist activations are in key and value
# raw_size_to_cache: how many raw activations should be kept
previous_raw_key, previous_raw_value = self.raw_activations[layer_idx]
if self._step_idx == 1:
# save the sink activations
# NOTE: we do not slice the key/value activations, which may cause duplication when ultragist_ratio=-1 for the first window, but it's okay
self.sink_activations[layer_idx] = [
slice_tensor(key, end=self.ultragist_sink_size, dim=self.k_seq_dim),
slice_tensor(value, end=self.ultragist_sink_size, dim=self.v_seq_dim),
]
if ultragist_sizes == [0]:
# this means the current input does not fulfill a window
# thus, the key and value are all raw activations, and we accumulate them until the window is fulfilled
assert raw_size_to_cache == window_size
raw_key = cat_tensor([
previous_raw_key,
key
], dim=self.k_seq_dim)
raw_value = cat_tensor([
previous_raw_value,
value
], dim=self.v_seq_dim)
self.raw_activations[layer_idx] = (raw_key, raw_value)
else:
for ultragist_size_idx, ultragist_size in enumerate(ultragist_sizes):
# NOTE: use the correct previous_ultragist_key and value!
previous_ultragist_key, previous_ultragist_value = self.l1_to_ln_ultragist_activations[ultragist_size_idx][layer_idx]
# if ultragist_size_idx == 0:
# ctx_manager = nullcontext()
# else:
# ctx_manager = torch.cuda.stream(self.stream)
# FIXME: only the first iteration works...
# with ctx_manager:
ultragist_key, ultragist_value, raw_key, raw_value = self._extract_ultragist_and_raw_memory(key, value, previous_ultragist_key, previous_ultragist_value, previous_raw_key, previous_raw_value, raw_size_to_cache, total_ultragist_size, ultragist_sizes, ultragist_size_idx)
self.l1_to_ln_ultragist_activations[ultragist_size_idx][layer_idx] = (ultragist_key, ultragist_value)
if ultragist_size_idx == 0:
self.raw_activations[layer_idx] = (raw_key, raw_value)
# if ultragist_size_idx != 0:
# print(self.stream.query())
def update_loss(self, batch_loss, valid_token_num):
"""
Accumulate loss for later perplexity computation and backward pass; past_key_values according to cache_method.
"""
# print(f"process {dist.get_rank()}: valid_token_num: {valid_token_num}; loss {batch_loss}")
if self._batch_loss is None:
# NOTE: multiply valid_token_num because batch_loss is divided by it in advance
self._batch_loss = batch_loss * valid_token_num
self._valid_token_num = valid_token_num
else:
# NOTE: avoid in-place operations, otherwise there will be gradient errors in training
self._batch_loss = self._batch_loss + batch_loss * valid_token_num
self._valid_token_num = self._valid_token_num + valid_token_num
def output(self, model_outputs):
"""
Override loss with accumulated loss.
"""
# override loss
if self._batch_loss is not None:
# here the batch_loss is the summation of all token losses in each element
loss = self._batch_loss.sum() / self._valid_token_num.sum()
# NOTE: prevent nan
batch_loss = self._batch_loss / self._valid_token_num
if (self._valid_token_num == 0).any():
batch_loss = batch_loss.masked_fill(self._valid_token_num == 0, 0.)
# NOTE: we must use dict to override values, otherwise trainer cannot find loss
model_outputs["loss"] = loss
model_outputs["batch_loss"] = batch_loss
model_outputs["valid_token_num"] = self._valid_token_num
# override last_hidden_states (used in generation)
ultragist_size = self._total_ultragist_sizes[-1]
# remove logits corresponding to ultragist tokens
if ultragist_size > 0:
model_outputs["logits"] = model_outputs["logits"][:, :-ultragist_size]
return model_outputs
def _extract_ultragist_and_raw_memory(self, key, value, previous_ultragist_key, previous_ultragist_value, previous_raw_key, previous_raw_value, raw_size_to_cache, total_ultragist_size, ultragist_sizes, ultragist_size_idx):
"""Extract ultragist and raw memory from the returned key and value. The raw memory is computed only if the ultragist_size_idx == 0."""
ultragist_size = ultragist_sizes[ultragist_size_idx]
# NOTE: ignore -1
previous_ultragist_size = sum(x for x in ultragist_sizes[:ultragist_size_idx] if x > 0)
if previous_ultragist_key is not None:
target_device = previous_ultragist_key.device
else:
if ultragist_size_idx == 0:
target_device = self._device
else:
target_device = self._cpu
if ultragist_size == -1:
actual_ultragist_size = self.ultragist_window - raw_size_to_cache
# the raw activations are used as ultragist activations
concat_raw_key = cat_tensor([
previous_raw_key,
key
], dim=self.k_seq_dim)
concat_raw_value = cat_tensor([
previous_raw_value,
value
], dim=self.v_seq_dim)
ultragist_key = cat_tensor([
previous_ultragist_key,
slice_tensor(concat_raw_key, end=actual_ultragist_size, dim=self.k_seq_dim).to(target_device, non_blocking=True)
], dim=self.k_seq_dim)
ultragist_value = cat_tensor([
previous_ultragist_value,
slice_tensor(concat_raw_value, end=actual_ultragist_size, dim=self.v_seq_dim).to(target_device, non_blocking=True)
], dim=self.v_seq_dim)
if ultragist_size_idx == 0:
raw_key = slice_tensor(concat_raw_key, start=actual_ultragist_size, end=self.ultragist_window, dim=self.k_seq_dim)
raw_value = slice_tensor(concat_raw_value, start=actual_ultragist_size, end=self.ultragist_window, dim=self.v_seq_dim)
else:
# [-ultragist_size:] activations are from ultragists, need to be accumulated
# [-raw_cache_size-ultragist_size:-ultragist_size] raw activations will be cached; if they are shorter than raw_cache_size, part of the previous raw activations will also be kept
ultragist_start_idx = - total_ultragist_size + previous_ultragist_size
ultragist_end_idx = ultragist_start_idx + ultragist_size
# NOTE: avoid end=0 for slicing
if ultragist_end_idx == 0:
ultragist_end_idx = None
ultragist_key = cat_tensor([
previous_ultragist_key,
slice_tensor(key, start=ultragist_start_idx, end=ultragist_end_idx, dim=self.k_seq_dim).to(target_device, non_blocking=True)
], dim=self.k_seq_dim)
ultragist_value = cat_tensor([
previous_ultragist_value,
slice_tensor(value, start=ultragist_start_idx, end=ultragist_end_idx, dim=self.v_seq_dim).to(target_device, non_blocking=True)
], dim=self.v_seq_dim)
# the raw activations are only updated once
if ultragist_size_idx == 0:
if key.shape[self.k_seq_dim] < raw_size_to_cache + ultragist_size:
concat_raw_key = cat_tensor([
previous_raw_key,
key
], dim=self.k_seq_dim)
concat_raw_value = cat_tensor([
previous_raw_value,
value
], dim=self.v_seq_dim)
raw_key = slice_tensor(concat_raw_key, start=self.ultragist_window - raw_size_to_cache, end=self.ultragist_window, dim=self.k_seq_dim)
raw_value = slice_tensor(concat_raw_value, start=self.ultragist_window - raw_size_to_cache, end=self.ultragist_window, dim=self.v_seq_dim)
else:
# becomes None when raw_size_to_cache = 0
raw_key = slice_tensor(key, start=ultragist_start_idx - raw_size_to_cache, end=ultragist_start_idx, dim=self.k_seq_dim)
raw_value = slice_tensor(value, start=ultragist_start_idx - raw_size_to_cache, end=ultragist_start_idx, dim=self.v_seq_dim)
if ultragist_size_idx == 0:
return ultragist_key, ultragist_value, raw_key, raw_value
else:
# NOTE: only l1 ultragist activations are kept on GPU
return ultragist_key.detach().to(target_device, non_blocking=True), ultragist_value.detach().to(target_device, non_blocking=True), None, None
# return ultragist_key, ultragist_value, None, None
def slice_tensor(x, start=None, end=None, dim=2):
if x is None:
return None
if end == 0:
return None
if start == x.shape[dim]:
return None
if start == end:
return None
if dim == 2:
if start is None and end is not None:
return x[:, :, :end, ...]
elif start is not None and end is None:
return x[:, :, start:, ...]
elif start is not None and end is not None:
return x[:, :, start:end, ...]
elif dim == 1:
if start is None and end is not None:
return x[:, :end, ...]
elif start is not None and end is None:
return x[:, start:, ...]
elif start is not None and end is not None:
return x[:, start:end, ...]
else:
raise NotImplementedError
def cat_tensor(list_of_tensors, dim=-1):
list_of_tensors = [t for t in list_of_tensors if t is not None]
if len(list_of_tensors) > 1:
result = torch.cat(list_of_tensors, dim=dim)
elif len(list_of_tensors) == 1:
result = list_of_tensors[0]
else:
result = None
return result
def slice_activations(activations, start=None, end=None, k_seq_dim=2, v_seq_dim=2):
new_activations = []
for key, value in activations:
new_key = slice_tensor(key, start=start, end=end, dim=k_seq_dim)
new_value = slice_tensor(value, start=start, end=end, dim=v_seq_dim)
new_activations.append([new_key, new_value])
return new_activations
def cat_activations(list_of_activations, k_seq_dim=2, v_seq_dim=2):
assert all(len(x) == len(list_of_activations[0]) for x in list_of_activations), f"Make sure all activations have the same number of layers! Found {[len(x) for x in list_of_activations]}."
new_activations = []
for layer_idx in range(len(list_of_activations[0])):
keys = [x[layer_idx][0] for x in list_of_activations]
values = [x[layer_idx][1] for x in list_of_activations]
new_key = cat_tensor(keys, dim=k_seq_dim)
new_value = cat_tensor(values, dim=v_seq_dim)
new_activations.append([new_key, new_value])
return new_activations
def interleave_activations(main_activations, augment_activations, main_spans, augment_spans, k_seq_dim=2, v_seq_dim=2, device=torch.device("cuda")):
""" Interleave main_activations and augment_activations according to main_span and augment_span.
Args:
main_span: a list of tuples (start_idx, end_idx). when start_idx and end_idx is None, the augment_activations will be plugged in.
augment_span: a list of tuples (start_idx, end_idx)
"""
assert len(main_activations) == len(augment_activations) , f"Make sure main and augment activations have the same number of layers! Found {len(main_activations)} and {len(augment_activations)}!"
assert sum(x[0] is None and x[1] is None for x in main_spans) == len(augment_spans), f"Make sure the number of slots for augmentation (start_idx=None and end_idx=None in main_spans) matches the number of augmentations. Found {sum(x for x in main_spans if x[0] is None and x[1] is None)} slots but {len(augment_spans)} augmentations!"
new_activations = []
for layer_idx in range(len(main_activations)):
main_key, main_value = main_activations[layer_idx]
augment_key, augment_value = augment_activations[layer_idx]
sliced_keys = []
sliced_values = []
augment_idx = 0
for start, end in main_spans:
if start is None and end is None:
# this means the augment key/value should be plugged in
augment_start, augment_end = augment_spans[augment_idx]
sliced_key = slice_tensor(
augment_key,
start=augment_start,
end=augment_end,
dim=k_seq_dim
).to(device)
sliced_value = slice_tensor(
augment_value,
start=augment_start,
end=augment_end,
dim=v_seq_dim
).to(device)
else:
sliced_key = slice_tensor(
main_key,
start=start,
end=end,
dim=k_seq_dim
)
sliced_value = slice_tensor(
main_value,
start=start,
end=end,
dim=v_seq_dim
)
sliced_keys.append(sliced_key)
sliced_values.append(sliced_value)
new_key = cat_tensor(sliced_keys, dim=k_seq_dim)
new_value = cat_tensor(sliced_values, dim=v_seq_dim)
new_activations.append([new_key, new_value])
return new_activations
def softmax(x:np.ndarray, axis=-1, temperature=1):
if isinstance(x, list):
x = np.array(x)
x = x / temperature
x = x - x.max(axis=axis, keepdims=True)
y = np.exp(x)
return y / y.sum(axis=axis, keepdims=True)
def l1_norm(x):
sum_x = sum(x)
x = [y/sum_x for y in x]
return x |