File size: 9,007 Bytes
073d715
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
272d4e1
073d715
 
272d4e1
073d715
 
272d4e1
073d715
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
faa5656
073d715
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
---
language:
- en
license: cc-by-sa-4.0
library_name: span-marker
tags:
- span-marker
- token-classification
- ner
- named-entity-recognition
- generated_from_span_marker_trainer
datasets:
- tomaarsen/ner-orgs
metrics:
- precision
- recall
- f1
widget:
- text: The Fellowship of British Baptists and BMS World Mission brings together in
    ministry the churches that are members of the Baptist Union of Scotland, Wales,
    the Irish Baptist Networks, and the Baptist Union of Great Britain.
- text: The program is classified in the National Collegiate Athletic Association
    (NCAA) Division I Bowl Subdivision (FBS), and the team competes in the Big 12
    Conference.
- text: The Human Rights Foundation, condemned the assault, with HRF president Thor
    Halvorssen Mendoza claiming that "the PSUV approved of the attacks against opposition
    deputies at the National Assembly ".
- text: But senior Conservatives, such as Commons Health Committee chairperson Sarah
    Wollaston and education minister Anne Milton, backed calls for a free vote on
    the issue, while Labour MP Stella Creasy said she would table an amendment on
    the matter to the Domestic Violence Bill and said that over 150 parliamentarians
    had expressed support for the change, and Labour's shadow Attorney General Shami
    Chakrabarti called the issue a test fo r May's feminism.
- text: From 1991 to 1992, the Social Democratic Party and Social Democrats of Croatia
    were a part of the National Union government which was created by Franjo Tuđman
    during the first stages of the war.
pipeline_tag: token-classification
base_model: roberta-large
model-index:
- name: SpanMarker with roberta-large on FewNERD, CoNLL2003, and OntoNotes v5
  results:
  - task:
      type: token-classification
      name: Named Entity Recognition
    dataset:
      name: FewNERD, CoNLL2003, and OntoNotes v5
      type: tomaarsen/ner-orgs
      split: test
    metrics:
    - type: f1
      value: 0.81019
      name: F1
    - type: precision
      value: 0.8238
      name: Precision
    - type: recall
      value: 0.7970
      name: Recall
---

# SpanMarker with roberta-large on FewNERD, CoNLL2003, and OntoNotes v5

This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [FewNERD, CoNLL2003, and OntoNotes v5](https://huggingface.co/datasets/tomaarsen/ner-orgs) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [roberta-large](https://huggingface.co/roberta-large) as the underlying encoder.

## Model Details

### Model Description
- **Model Type:** SpanMarker
- **Encoder:** [roberta-large](https://huggingface.co/roberta-large)
- **Maximum Sequence Length:** 256 tokens
- **Maximum Entity Length:** 8 words
- **Training Dataset:** [FewNERD, CoNLL2003, and OntoNotes v5](https://huggingface.co/datasets/tomaarsen/ner-orgs)
- **Language:** en
- **License:** cc-by-sa-4.0

### Model Sources

- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)

### Model Labels
| Label | Examples                                     |
|:------|:---------------------------------------------|
| ORG   | "IAEA", "Church 's Chicken", "Texas Chicken" |

## Evaluation

### Metrics
| Label   | Precision | Recall | F1     |
|:--------|:----------|:-------|:-------|
| ORG     | 0.8238    | 0.7970 | 0.81019|

## Uses

### Direct Use for Inference

```python
from span_marker import SpanMarkerModel

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("nbroad/span-marker-roberta-large-orgs-v1")
# Run inference
entities = model.predict("The program is classified in the National Collegiate Athletic Association (NCAA) Division I Bowl Subdivision (FBS), and the team competes in the Big 12 Conference.")
```

### Downstream Use
You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

```python
from span_marker import SpanMarkerModel, Trainer

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("nbroad/span-marker-roberta-large-orgs-v1")

# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003

# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
    model=model,
    train_dataset=dataset["train"],
    eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("nbroad/span-marker-roberta-large-orgs-v1-finetuned")
```
</details>

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set          | Min | Median  | Max |
|:----------------------|:----|:--------|:----|
| Sentence length       | 1   | 23.5706 | 263 |
| Entities per sentence | 0   | 0.7865  | 39  |

### Training Hyperparameters
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training Results
| Epoch  | Step  | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
|:------:|:-----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|
| 0.1430 | 600   | 0.0085          | 0.7425               | 0.7383            | 0.7404        | 0.9726              |
| 0.2860 | 1200  | 0.0078          | 0.7503               | 0.7516            | 0.7510        | 0.9741              |
| 0.4290 | 1800  | 0.0077          | 0.6962               | 0.8107            | 0.7491        | 0.9718              |
| 0.5720 | 2400  | 0.0060          | 0.8074               | 0.7486            | 0.7769        | 0.9753              |
| 0.7150 | 3000  | 0.0057          | 0.8135               | 0.7717            | 0.7921        | 0.9770              |
| 0.8580 | 3600  | 0.0059          | 0.7997               | 0.7764            | 0.7879        | 0.9763              |
| 1.0010 | 4200  | 0.0057          | 0.7860               | 0.8051            | 0.7954        | 0.9771              |
| 1.1439 | 4800  | 0.0058          | 0.7907               | 0.7717            | 0.7811        | 0.9763              |
| 1.2869 | 5400  | 0.0058          | 0.8116               | 0.7803            | 0.7956        | 0.9774              |
| 1.4299 | 6000  | 0.0056          | 0.7918               | 0.7850            | 0.7884        | 0.9770              |
| 1.5729 | 6600  | 0.0056          | 0.8097               | 0.7837            | 0.7965        | 0.9769              |
| 1.7159 | 7200  | 0.0055          | 0.8113               | 0.7790            | 0.7948        | 0.9765              |
| 1.8589 | 7800  | 0.0052          | 0.8095               | 0.7970            | 0.8032        | 0.9782              |
| 2.0019 | 8400  | 0.0054          | 0.8244               | 0.7782            | 0.8006        | 0.9774              |
| 2.1449 | 9000  | 0.0053          | 0.8238               | 0.7970            | 0.8102        | 0.9782              |
| 2.2879 | 9600  | 0.0053          | 0.82                 | 0.7901            | 0.8048        | 0.9773              |
| 2.4309 | 10200 | 0.0053          | 0.8243               | 0.7936            | 0.8086        | 0.9785              |
| 2.5739 | 10800 | 0.0053          | 0.8159               | 0.7953            | 0.8055        | 0.9781              |
| 2.7169 | 11400 | 0.0053          | 0.8072               | 0.8034            | 0.8053        | 0.9784              |
| 2.8599 | 12000 | 0.0052          | 0.8111               | 0.8017            | 0.8064        | 0.9782              |

### Framework Versions
- Python: 3.10.12
- SpanMarker: 1.5.0
- Transformers: 4.35.2
- PyTorch: 2.1.0a0+32f93b1
- Datasets: 2.15.0
- Tokenizers: 0.15.0

## Citation

### BibTeX
```
@software{Aarsen_SpanMarker,
    author = {Aarsen, Tom},
    license = {Apache-2.0},
    title = {{SpanMarker for Named Entity Recognition}},
    url = {https://github.com/tomaarsen/SpanMarkerNER}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->