File size: 14,709 Bytes
1b64841 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f809e1294d0>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f809e129560>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f809e1295f0>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f809e129680>",
"_build": "<function ActorCriticPolicy._build at 0x7f809e129710>",
"forward": "<function ActorCriticPolicy.forward at 0x7f809e1297a0>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f809e129830>",
"_predict": "<function ActorCriticPolicy._predict at 0x7f809e1298c0>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f809e129950>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f809e1299e0>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f809e129a70>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7f809e17e510>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 1015808,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1651747595.8698084,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAqHT1DenA9J+W0PN1FN75rsak8CvEbvAAAAAAAAAAA8z7vPSnYTbotG5S7FmbiuK7ulbqFKca5AACAPwAAgD/NDko8KSx+usapZLoTelI2FMMHO6pshTkAAIA/AACAP4DOMr1cw3662K3cOtPKpDVF12a5F9gAugAAgD8AAIA/M0PEuoS9pD1qI7I9QTZhvvuZcz3iVJm8AAAAAAAAAABaoAA+pLgSOlT9BrzpnA66zIZFPKUN/LoAAIA/AACAPwDVPz1cs1u6tvG6Os0BZjWz8Y66E8nVuQAAgD8AAIA/s0mEPRTYm7oO4kQ7M93ftLvszrqASWG6AACAPwAAgD8zuQy9riOEulKCpDsKTTO2/+b2OpG3LbUAAIA/AACAP83YSrxcOx+6+Y7Lu1POIzZN45Y66DCQtQAAgD8AAIA/AMSUPY++S7pw9Tq8vOwpNl1DwrqVuZi1AACAPwAAgD/ArrG9PZpouUJGDrtRMWO5T8Zlu9aFEroAAIA/AACAP5qrL732wDm6PiY4Pe+tqjzT+SS7z5GTPQAAgD8AAIA/JmDSPRRsqrqQcM46YjC3NfGALLrV4+y5AACAPwAAgD9NfVM9SGOiun6e/rvXjjY2sNGWOsEZpbUAAIA/AACAPwDLiDzDKRi66oCVO/fz0zhhIic5gKkyugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.015808000000000044,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIyXTo9DxOZkCUhpRSlIwBbJRN6AOMAXSUR0CUtr+98JD3dX2UKGgGaAloD0MIU+xoHGosY0CUhpRSlGgVTegDaBZHQJS2/m5lOGl1fZQoaAZoCWgPQwiFIt3PqchjQJSGlFKUaBVN6ANoFkdAlLlhGH58B3V9lChoBmgJaA9DCHdJnBXR1GZAlIaUUpRoFU3oA2gWR0CUu5UXYUWVdX2UKGgGaAloD0MIxVVl3xWoYECUhpRSlGgVTegDaBZHQJTDFWxQizN1fZQoaAZoCWgPQwiXAWcp2S9hQJSGlFKUaBVN6ANoFkdAlMMWgrYoRnV9lChoBmgJaA9DCMcS1sbYyStAlIaUUpRoFUvTaBZHQJTFyTlkpZx1fZQoaAZoCWgPQwh9Bz9xgK1jQJSGlFKUaBVN6ANoFkdAlNIEf1YhdXV9lChoBmgJaA9DCPVMLzEWoWRAlIaUUpRoFU3oA2gWR0CU0vI68xsVdX2UKGgGaAloD0MIw2aACzKMYUCUhpRSlGgVTegDaBZHQJTUWrXDm8x1fZQoaAZoCWgPQwiT4A1p1JdgQJSGlFKUaBVN6ANoFkdAlNZctTUAk3V9lChoBmgJaA9DCJW3I5wW22VAlIaUUpRoFU3oA2gWR0CU2+jDKoycdX2UKGgGaAloD0MIvaseMI9vZkCUhpRSlGgVTegDaBZHQJUBM/zJ6pp1fZQoaAZoCWgPQwiFCDiEKiNiQJSGlFKUaBVN6ANoFkdAlQV58BuGbnV9lChoBmgJaA9DCFGDaRg+mkFAlIaUUpRoFUv7aBZHQJUJyq3mV7h1fZQoaAZoCWgPQwhJEoQrIBBjQJSGlFKUaBVN6ANoFkdAlRG4mLLpzXV9lChoBmgJaA9DCK7TSEvlU2FAlIaUUpRoFU3oA2gWR0CVEhw5/9YPdX2UKGgGaAloD0MIqtbCLLTjYkCUhpRSlGgVTegDaBZHQJUbWgctGut1fZQoaAZoCWgPQwhLH7qgvnReQJSGlFKUaBVN6ANoFkdAlRyKoybhFXV9lChoBmgJaA9DCA6jIHh8T2FAlIaUUpRoFU3oA2gWR0CVHwNSZSeidX2UKGgGaAloD0MIcTyfAfUIZUCUhpRSlGgVTegDaBZHQJUhM5S3sol1fZQoaAZoCWgPQwgeUaG6uV1jQJSGlFKUaBVN6ANoFkdAlSnSfg75mHV9lChoBmgJaA9DCJEPejarqmBAlIaUUpRoFU3oA2gWR0CVKdO8kD6ndX2UKGgGaAloD0MIHLXC9L1rUkCUhpRSlGgVS+NoFkdAlSys9Oh0yXV9lChoBmgJaA9DCEiKyLAKcGVAlIaUUpRoFU3oA2gWR0CVLNM2m52AdX2UKGgGaAloD0MIti41Qj8XUkCUhpRSlGgVS71oFkdAlS16j3225XV9lChoBmgJaA9DCHmsGRnkL2NAlIaUUpRoFU3oA2gWR0CVN9vx6OYIdX2UKGgGaAloD0MIiIBDqFK5YUCUhpRSlGgVTegDaBZHQJU40Qd0aIh1fZQoaAZoCWgPQwhDAHDsWZ5iQJSGlFKUaBVN6ANoFkdAlToNBrvb5HV9lChoBmgJaA9DCOcdp+jIE2NAlIaUUpRoFU3oA2gWR0CVO9Fpwjt5dX2UKGgGaAloD0MIQrKACVwLYkCUhpRSlGgVTegDaBZHQJVoSdNFjNJ1fZQoaAZoCWgPQwiez4B6M3xiQJSGlFKUaBVN6ANoFkdAlW0+HSF493V9lChoBmgJaA9DCIxIFFrWkWNAlIaUUpRoFU3oA2gWR0CVcbH3lCC0dX2UKGgGaAloD0MIOfJAZBFJY0CUhpRSlGgVTegDaBZHQJV6NbzK9wp1fZQoaAZoCWgPQwhXX10VqHdkQJSGlFKUaBVN6ANoFkdAlXqc2Jiy6nV9lChoBmgJaA9DCJnyIaiaUGVAlIaUUpRoFU3oA2gWR0CVhUSdvsJIdX2UKGgGaAloD0MIXdxGA/h7Z0CUhpRSlGgVTegDaBZHQJWKa2jO9nN1fZQoaAZoCWgPQwhENLqD2HJQQJSGlFKUaBVL8mgWR0CVjUhakhzOdX2UKGgGaAloD0MIE5z6QHJqZECUhpRSlGgVTegDaBZHQJWTBXr+o991fZQoaAZoCWgPQwiXdf9YCDliQJSGlFKUaBVN6ANoFkdAlZMHX2/SIHV9lChoBmgJaA9DCMb4MHvZHGdAlIaUUpRoFU3oA2gWR0CVldCxu89PdX2UKGgGaAloD0MImZoEb0jOXUCUhpRSlGgVTegDaBZHQJWV94JNTLp1fZQoaAZoCWgPQwj3rkFfeiJhQJSGlFKUaBVN6ANoFkdAlZapxaPjn3V9lChoBmgJaA9DCKXZPA6D7GVAlIaUUpRoFU3oA2gWR0CVoLa24NI9dX2UKGgGaAloD0MIa7sJvmm1XkCUhpRSlGgVTegDaBZHQJWhpJXhfjV1fZQoaAZoCWgPQwjGbp9V5g9mQJSGlFKUaBVN6ANoFkdAlaMBoVVPvnV9lChoBmgJaA9DCKt14nK8rGZAlIaUUpRoFU3oA2gWR0CVpOQv6CUYdX2UKGgGaAloD0MIRDUlWQcqY0CUhpRSlGgVTegDaBZHQJXRITwlSjx1fZQoaAZoCWgPQwi3DaMgeCNnQJSGlFKUaBVN6ANoFkdAldYALux8lXV9lChoBmgJaA9DCGH7yRgfsWNAlIaUUpRoFU3oA2gWR0CV2m1jRUm2dX2UKGgGaAloD0MIB5j5Dn52S0CUhpRSlGgVS85oFkdAleG68g6ltXV9lChoBmgJaA9DCLly9s5oj2VAlIaUUpRoFU3oA2gWR0CV41H9FWn1dX2UKGgGaAloD0MI34lZL4Z5Y0CUhpRSlGgVTegDaBZHQJXt359E1EV1fZQoaAZoCWgPQwgHl445zxVcQJSGlFKUaBVN6ANoFkdAlfMhcqvvB3V9lChoBmgJaA9DCNDVVuwvEUJAlIaUUpRoFUvbaBZHQJX0vy9VWCF1fZQoaAZoCWgPQwhWgzC3e0pkQJSGlFKUaBVN6ANoFkdAlfYR0dRzinV9lChoBmgJaA9DCHdn7baLzGhAlIaUUpRoFU3oA2gWR0CV+6O0b961dX2UKGgGaAloD0MIzHoxlJNqY0CUhpRSlGgVTegDaBZHQJX7pT2nKnx1fZQoaAZoCWgPQwh/+WTFcBFhQJSGlFKUaBVN6ANoFkdAlf5xFy7wrnV9lChoBmgJaA9DCENxx5t8pWNAlIaUUpRoFU3oA2gWR0CV/pcZ9/jLdX2UKGgGaAloD0MIk+NO6WAcYkCUhpRSlGgVTegDaBZHQJX/QddVvMt1fZQoaAZoCWgPQwil8+FZgrJBQJSGlFKUaBVL2mgWR0CWBDv0AcT8dX2UKGgGaAloD0MIZ/M4DGaGZECUhpRSlGgVTegDaBZHQJYIqb8WKuV1fZQoaAZoCWgPQwgYJegv9MtdQJSGlFKUaBVN6ANoFkdAlgmBpQDV6XV9lChoBmgJaA9DCI9TdCSXxGRAlIaUUpRoFU3oA2gWR0CWCpZy+6AfdX2UKGgGaAloD0MIMGghASPYY0CUhpRSlGgVTegDaBZHQJYMSE4//vR1fZQoaAZoCWgPQwgr9wKzwh9lQJSGlFKUaBVN6ANoFkdAljwd16mfoXV9lChoBmgJaA9DCF4sDJHTYWNAlIaUUpRoFU3oA2gWR0CWQLFotcv/dX2UKGgGaAloD0MI8BMH0G+eZUCUhpRSlGgVTegDaBZHQJZHuZ3LV4J1fZQoaAZoCWgPQwgHtd/aCa5mQJSGlFKUaBVN6ANoFkdAllPuGwiaAnV9lChoBmgJaA9DCCMVxhaCL2dAlIaUUpRoFU3oA2gWR0CWWTt+CsfadX2UKGgGaAloD0MIBFWjVwMrZECUhpRSlGgVTegDaBZHQJZcdooNNJx1fZQoaAZoCWgPQwhiuhCrv8ZmQJSGlFKUaBVN6ANoFkdAlmIplnRLK3V9lChoBmgJaA9DCBPXMa44G2NAlIaUUpRoFU3oA2gWR0CWYivN/vv0dX2UKGgGaAloD0MIZ7rXSf3rZUCUhpRSlGgVTegDaBZHQJZk7Ggi/wl1fZQoaAZoCWgPQwgvNUI/0/ZgQJSGlFKUaBVN6ANoFkdAlmUSup0fYHV9lChoBmgJaA9DCD4/jBCez2VAlIaUUpRoFU3oA2gWR0CWZbKSPluFdX2UKGgGaAloD0MIuW+1TtygZUCUhpRSlGgVTegDaBZHQJZqwDeTFER1fZQoaAZoCWgPQwhXI7vSMu9eQJSGlFKUaBVN6ANoFkdAlm9+09hZyXV9lChoBmgJaA9DCMWtghjowmRAlIaUUpRoFU3oA2gWR0CWcEvQWvbHdX2UKGgGaAloD0MIzjXM0HhwY0CUhpRSlGgVTegDaBZHQJZxfwBo24x1fZQoaAZoCWgPQwglBRbAFIJhQJSGlFKUaBVN6ANoFkdAlnM0jTrmhnV9lChoBmgJaA9DCNFXkGYszERAlIaUUpRoFUvjaBZHQJZz0yj59E11fZQoaAZoCWgPQwjsvfiiPeJjQJSGlFKUaBVN6ANoFkdAlqLsJtzjm3V9lChoBmgJaA9DCCpTzEHQeWBAlIaUUpRoFU3oA2gWR0CWp2J7sv7FdX2UKGgGaAloD0MIBr6iW6/EZECUhpRSlGgVTegDaBZHQJaurMqz7dl1fZQoaAZoCWgPQwj59NiWgW1pQJSGlFKUaBVN6ANoFkdAlrp3BUJfIHV9lChoBmgJaA9DCDYebLHbBWdAlIaUUpRoFU3oA2gWR0CWv4NFSbYsdX2UKGgGaAloD0MIvaqzWuAmZUCUhpRSlGgVTegDaBZHQJbCVBw++uh1fZQoaAZoCWgPQwhs6GZ/oBNmQJSGlFKUaBVN6ANoFkdAlseDEzfrKXV9lChoBmgJaA9DCG/x8J4DBmFAlIaUUpRoFU3oA2gWR0CWx4QOWjXWdX2UKGgGaAloD0MISSpTzMGWZUCUhpRSlGgVTegDaBZHQJbKTS8an751fZQoaAZoCWgPQwhCzCVV23JRQJSGlFKUaBVL22gWR0CWyqOKfnOjdX2UKGgGaAloD0MIUS/4NKerY0CUhpRSlGgVTegDaBZHQJbK9d2PkrB1fZQoaAZoCWgPQwhPIy2Vt21mQJSGlFKUaBVN6ANoFkdAls++f29L6HV9lChoBmgJaA9DCOlHwylzYmFAlIaUUpRoFU3oA2gWR0CW1BCtRvWIdX2UKGgGaAloD0MIM6g2OBFHYECUhpRSlGgVTegDaBZHQJbU1S75Ec91fZQoaAZoCWgPQwi6u86GfJFiQJSGlFKUaBVN6ANoFkdAltYAcLjPwHV9lChoBmgJaA9DCM/AyMsaoWhAlIaUUpRoFU3oA2gWR0CW1792X9iudX2UKGgGaAloD0MIdcdim1RoZUCUhpRSlGgVTegDaBZHQJbYYWWQfZF1ZS4="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 248,
"n_steps": 1024,
"gamma": 0.999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 4,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
} |