ligeti commited on
Commit
20235f3
·
verified ·
1 Parent(s): becb173

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -13,7 +13,7 @@ tags:
13
  ---
14
  ## ProkBERT-mini-long-phage Model
15
 
16
- This finetuned model is specifically designed for promoter identification and is based on the [ProkBERT-mini-long model](https://huggingface.co/neuralbioinfo/prokbert-mini-long).
17
 
18
  For more details, refer to the [pahge dataset description](https://huggingface.co/datasets/neuralbioinfo/phage-test-10k) used for training and evaluating this model.
19
 
@@ -38,8 +38,8 @@ The following example demonstrates how to use the ProkBERT-mini-promoter model f
38
  from prokbert.prokbert_tokenizer import ProkBERTTokenizer
39
  from transformers import MegatronBertForSequenceClassification
40
  finetuned_model = "neuralbioinfo/prokbert-mini-long-phage"
41
- kmer = 6
42
- shift= 2
43
 
44
  tok_params = {'kmer' : kmer,
45
  'shift' : shift}
@@ -76,7 +76,7 @@ print(outputs)
76
 
77
  ### Intended Use
78
 
79
- **Intended Use Cases:** ProkBERT-mini-phage is intended for bioinformatics researchers and practitioners focusing on genomic sequence analysis, including:
80
  - sequence classification tasks
81
  - Exploration of genomic patterns and features
82
 
 
13
  ---
14
  ## ProkBERT-mini-long-phage Model
15
 
16
+ This finetuned model is specifically designed for promoter identification and is based on the [ProkBERT-mini-c model](https://huggingface.co/neuralbioinfo/prokbert-mini-long).
17
 
18
  For more details, refer to the [pahge dataset description](https://huggingface.co/datasets/neuralbioinfo/phage-test-10k) used for training and evaluating this model.
19
 
 
38
  from prokbert.prokbert_tokenizer import ProkBERTTokenizer
39
  from transformers import MegatronBertForSequenceClassification
40
  finetuned_model = "neuralbioinfo/prokbert-mini-long-phage"
41
+ kmer = 1
42
+ shift= 1
43
 
44
  tok_params = {'kmer' : kmer,
45
  'shift' : shift}
 
76
 
77
  ### Intended Use
78
 
79
+ **Intended Use Cases:** ProkBERT-mini-c-phage is intended for bioinformatics researchers and practitioners focusing on genomic sequence analysis, including:
80
  - sequence classification tasks
81
  - Exploration of genomic patterns and features
82